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Physiological Data Collected from Wearable Devices 
Identify and Predict Inflammatory Bowel Disease Flares

Wearable Metrics Change up to 
7-weeks Prior to Flares

309 participants across 36 states

Circadian patterns of heart rate variability identify 
inflammatory and symptom flares 

Heart rate and resting heart rate are higher during 
inflammatory and symptom flares

Lower daily steps during inflammatory flares

Wearable metrics identify subclinical inflammation and  
whether inflammation is present during symptom flares
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BACKGROUND & AIMS: Wearable devices capture physiolog-
ical signals noninvasively and passively. Many of these pa-
rameters have been linked to inflammatory bowel disease
(IBD) activity. We evaluated the associative ability of several
physiological metrics with IBD flares and how they change
before the development of flare. METHODS: Participants
throughout the United States answered daily disease activity
surveys and wore an Apple Watch (Apple), Fitbit (Google), or
Oura Ring (Oura Health). These devices collected longitudinal
heart rate (HR), resting heart rate (RHR), heart rate variability
(HRV), steps, and oxygenation. C-reactive protein, erythrocyte
sedimentation rate, and fecal calprotectin were collected as
standard of care. Linear mixed-effect models were imple-
mented to analyze HR, RHR, steps, and oxygenation, and cosi-
nor mixed-effect models were applied to HRV circadian
FLA 5.7.0 DTD � YGAST66585_proof �
features. Mixed-effect logistic regression was used to determine
the predictive ability of physiological metrics. RESULTS: Three
hundred and nine participants were enrolled across 36 states.
Circadian patterns of HRV differed significantly between pe-
riods of inflammatory flare and remission and symptomatic
flare and remission. Marginal means for HR and RHR were
higher during periods of inflammatory flare and symptomatic
flare. There were fewer daily steps during inflammatory flares.
HRV, HR, and RHR differentiated whether participants with
symptoms had inflammation. HRV, HR, RHR, steps, and
oxygenation were significantly altered up to 7 weeks before
inflammatory and symptomatic flares. CONCLUSIONS: Longi-
tudinally collected physiological metrics from wearable devices
can identify and change before IBD flares, suggesting their
feasibility to monitor and predict IBD activity.
1 February 2025 � 3:57 pm � ce
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Inflammatory bowel disease flares are challenging to
predict and rely on cross-sectional, single time point
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Keywords: Wearable Devices; Inflammatory Bowel Disease;
Prediction; Crohn’s Disease; Ulcerative Colitis.

nflammatory bowel diseases (IBDs)—ulcerative colitis

assessments.

NEW FINDINGS

Wearable devices collect nearly continuous physiological
metrics that can identify and predict inflammatory and
symptomatic inflammatory bowel disease flares.

LIMITATIONS

Laboratory measurements of disease activity were
collected as part of participant’s standard of care
management, limiting the ability to determine precise
transitions points between uninflamed and inflamed
states.

CLINICAL RESEARCH RELEVANCE

This is the first large study to demonstrate the
physiological metrics collected from wearable devices
can identify, differentiate, and predict inflammatory and
symptomatic flares. This indicates the potential ability of
wearable devices to be used in the monitoring of
inflammatory conditions, such as inflammatory bowel
disease.

BASIC RESEARCH RELEVANCE

The dense physiological assessments wearable devices
collect can potentially be used to complement and
extend physiological observations about inflammatory
bowel disease.

Abbreviations used in this paper: ANS, autonomic nervous system; AUC,
area under the curve; AUPRC, area under precision-recall curve; BMI,
body mass index; CD, Crohn’s disease; CRP, C-reactive protein; ESR,
erythrocyte sedimentation rate; FC, fecal calprotectin; HR, heart rate;
HRV, heart rate variability; IBD, inflammatory bowel disease; MESOR,
midline-estimating statistic of rhythm; PNS, parasympathetic nervous
system; PRO, patient-reported outcomes; RMSSD, root mean square of
successive differences between normal heartbeats; RHR, resting heart
rate; SDNN, standard deviation of the inter-beat interval of normal sinus
beats; SNS, sympathetic nervous system; SpO2, oxygen saturation of
arterial hemoglobin; UC, ulcerative colitis. Q1 Q2
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I(UC) and Crohn’s disease (CD)—are chronic relapsing
and remitting inflammatory diseases of the gastrointestinal
tract.1,2 Their management is challenging due to unpre-
dictable and frequent disease flares and frequent discor-
dance of inflammation and symptoms.3 Current modalities
of disease monitoring have substantial limitations and rely
on patient-reported symptoms and assessment of inflam-
mation using blood or stool testing, imaging, or ileocolono-
scopy. However, evaluations are limited to a single time
point of assessment, are inconvenient, and can be invasive.
New monitoring modalities are needed that can assess dis-
ease activity longitudinally, passively, and in real time.

Wearable devices are used by approximately 20% of
individuals in the United States.4 They can measure physi-
ological metrics in a near-continuous or continuous manner,
including heart rate (HR), activity, resting heart rate (RHR),
and heart rate variability (HRV). Wearable devices are an
increasingly accepted tool for monitoring health and dis-
ease. They are frequently used in noninflammatory-based
diseases for remote patient monitoring, allowing in-
dividuals to be monitored outside of the clinical setting,
which has resulted in improved outcomes in multiple dis-
ease states.5,6 There is increasing interest in monitoring
chronic inflammatory diseases and prediction of flares and
medication response. There are limited publications in this
space due to the difficulty monitoring inflammatory-based
conditions remotely via wearable technology. Individuals
with IBD are interested in using wearable technology to
manage their disease.7 Yet, there are limited studies pub-
lished that evaluate wearable technology in relation to IBD
activity. One small study followed 37 patients with IBD after
bowel surgery, finding that activity and sleep data from
wearable biosensors predicted postoperative length of
hospital stay.8 Two studies evaluating a sweat-sensing
wearable device further demonstrated that sweat-based
assessments of immune and inflammatory markers corre-
late with serum measurements. These studies, although
small, demonstrated the feasibility of passively monitoring
markers of disease activity in IBD.9,10

Commonly used wearable devices can assess physio-
logical signals, which are altered in chronic inflammatory
diseases, thereby creating an opportunity for disease
monitoring. Chronic inflammatory diseases, such as IBD, are
associated with impaired autonomic nervous system (ANS)
function. Both UC and CD have been found to have an
impaired cardiovagal tone and relative parasympathetic
suppression and sympathetic predominance.11–13 ANS al-
terations are associated with changes in several physiolog-
ical metrics that can be measured with wearable technology,
providing an opportunity to monitor inflammatory diseases
using these tools. An important parameter that can be
measured by wearable technology is HRV. HRV is a measure
of the small-time differences between each heartbeat.
Changes in the beat-to-beat HR are controlled by both
FLA 5.7.0 DTD � YGAST66585_proof �
sympathetic (SNS) and parasympathetic nervous system
(PNS) activity. HRV is an indirect measure of the ANS.14

Higher HRV reflects a higher PNS tone, and lower HRV re-
flects higher SNS tone. Cross-sectional studies have
demonstrated a decrease in HRV in IBD. In addition, they
have shown that parasympathetic function displays a
stronger inverse association with disease activity compared
with sympathetic function supporting overall ANS
dysfunction in IBD.15 Similarly, HR is affected by changes in
ANS function with increased sympathetic tone raising HR.16

To demonstrate the feasibility of wearable devices to
monitor physiological metrics and their relationship to IBD
disease activity, we performed a pilot study in which 15 par-
ticipants with UC used awearable patch tomeasure HRV over 9
months. We found that longitudinally collected increased SNS
1 February 2025 � 3:57 pm � ce
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activity was associated with UC symptoms and elevated in-
flammatory markers.17 Our current study built on this initial
observation. To evaluate the ability of multiple physiological
signals collected from wearable devices to identify IBD flares,
we launched the IBD Forecast Study.

Materials and Methods
Study Population

The IBD Forecast Study is a prospective, exploratory,
observational, cohort study enrolling individuals throughout
the United States. Eligible participants had received a diagnosis
of CD or UC, were 18 years or older, were on a medication to
treat IBD, and were willing to use a wearable device. Partici-
pants were excluded if they were pregnant; had significant
medical conditions, such as heart failure or another chronic
disease; had a pacemaker or defibrillator; or used medications
that impact HR or HRV, such as beta blockers, calcium channel
blockers, or benzodiazepines.

Participants were nationally recruited via social media
advertising, study flyers, a study website, and an e-mail about
the study sent to individuals with IBD who visited the Inflam-
matory Bowel Disease Center at Mount Sinai Hospital, New
York, NY. A participant could use their own Apple Watch (Ap-
ple), Fitbit (Google), or Oura Ring (Oura Health), or be provided
with an Apple Watch or Fitbit for the duration of the study. No
compensation was provided. Participants were able to
contribute for as long as they liked. The study opened in
December 2021 and closed in June 2023.

Study Procedures
Participants downloaded ehive, our custom digital research

platform, to their smartphones; self-verified inclusion and
exclusion criteria; and signed the electronic study consent.18

Participants linked their wearable device or requested a
wearable device from the study team, provided baseline de-
mographic information, medical and surgical history, and IBD
history through the app. Participants were recommended to
use their wearable device for a minimum of 8 hours per day.
Participants who used their wearable device or answered daily
surveys fewer than 4 days per week were sent a smartphone
push notification reminding them to participate.

Wearable Devices and Physiological Metrics
This study used 4 physiological metrics from the 3 device

types (ie, Apple Watch, Fitbit, and Oura Ring). The metrics
collected by all the devices included HRV, HR, RHR, and daily
steps. These wearable devices are commercially available and
contain photoplethysmography optical sensors. These sensors
enable the assessment of capillary volume changes, determi-
nation of number of heart beats, and calculation of time be-
tween heart beats for HRV measurements.19–21 HR is calculated
as beats per minute throughout the day and night and RHR is
defined as an estimation of a user’s lowest HR during periods of
rest. The Apple Watch calculates the SD of the inter-beat in-
terval of normal sinus beats (SDNN), which is a time domain
HRV metric that reflects both SNS and PNS activity. Lower
values reflect increased sympathetic tone. The Fitbit and Oura
Ring calculate HRV in the time domain metric root mean square
of successive differences between normal heartbeats (RMSSD).
FLA 5.7.0 DTD � YGAST66585_proof �
The RMSSD is influenced more by the PNS compared with the
SNS, with lower values reflecting increased sympathetic tone.22

The Apple Watch Series 6 or later can measure the oxygen
saturation of arterial hemoglobin (SpO2) using conventional
pulse oximetry methods. This feature has been validated in
several studies.23 See Supplementary Materials and Methods
for further information.

Longitudinal Clinical and Laboratory Assessment
Clinical disease activity was assessed using baseline and

daily UC- or CD-specific Patient Reported Outcome (PRO-2)
scores. The PRO-2 is derived from the CD Activity Index and
asks participants to rate their abdominal pain and stool fre-
quency with the components weighted to create a cumulative
score. The UC-specific PRO-2 is derived from the rectal bleeding
and stool frequency sub-scores of the Mayo Clinic Score for UC.
It consists of 2 questions that ask participants to rate their
degree of rectal bleeding and stool frequency. C-reactive pro-
tein (CRP), erythrocyte sedimentation rate (ESR), and fecal
calprotectin (FC) results were collected as part of each partic-
ipant’s standard of care management. Results were reported by
participants in ehive. Laboratory values that were not reported
were captured through the participants’ electronic health re-
cord if he or she was followed at Mount Sinai Hospital.

Symptomatic and Inflammatory Flare Criteria
IBD flares were characterized as being consistent with in-

flammatory flares, denoted by elevated inflammatory bio-
markers, or symptomatic flares, according to the presence of
symptoms consistent with an IBD flare. In each timeframe,
patients could meet the study definition of inflammatory flare
either with or without symptomatic flare, symptomatic flare
without inflammation, or remission. Inflammatory flare was
defined by elevation of CRP, ESR, or FC values. An FC >150 mg/
g was consistent with active inflammation.24,25 CRP and ESR
values were considered elevated if they were >5 mg/dL and
>30 mm/h, respectively.26 We assumed that the underlying
inflammatory state extended for a period before and after the
laboratory test is obtained. To account for this, and to avoid
misclassification of inflammatory status around each laboratory
test, CRP, ESR, and FC values were input in a window of ±7
days. For the CD PRO-2, remission was defined as a PRO-2
score <8.27,28 In UC, symptomatic remission was defined us-
ing a PRO-2 score �1 with a rectal bleeding score of 0 and stool
frequency score �1.29

There is no consensus for the minimum number of daily
symptom-based surveys denoting symptomatic activity required
to classify a symptomatic flare. To evaluate potential criteria, we
performed a sensitivity analysis to assess several definitions of
symptomatic disease flare described in detail in Supplementary
Figure 1. Based on this analysis, we limited our definition of
symptomatic flare to having at least 4 surveys answered in each
7-day period, with at least 2 of these surveys meeting the criteria
for symptomatic flare. This was consistent with our a priori
definition of study compliance, which asked participants to
answer a minimum of 4 surveys per 7-day period.

Statistical Analysis
Sex, age, device type, and body mass index (BMI) data were

used as covariates in all statistical analyses. No association was
1 February 2025 � 3:57 pm � ce
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found between patients with reported or missing demographic
information, supporting no departure from missing at random
mechanism. As such, missing values were imputed based on the
multivariate distribution of the observed values using the
function are gImpute from Hmisc R package.30 Longitudinal
wearable measures were not imputed for this analysis. We use
a mixed-model approach that produces robust estimates when
missing values in the wearable data collection are missing at
random. Factors leading to missing wearable data are dictated
by technological and behavioral factors not easily determined.
However, considering the large dataset, comparisons made
within individuals, and models using wearable data collected
when clinical information is recorded, the missing at random
assumption is reasonably met.

Heart Rate Variability Analysis
Longitudinal changes in HRV have been found to have daily

circadian patterns over a 24-hour period and can be modeled
using a nonlinear Cosinor model approach.31 Because our
analysis evaluates the changes in the daily pattern as a function
of flares in a longitudinal study, those changes were evaluated
using Cosinor mixed-effects models. The analyses were carried
out using the CosinorRmixedeffects R package,32 which is
publicly available and was developed by our team. Five hun-
dred bootstraps were applied. This nonlinear model is fully
described by Hou et al.32 This approach models the HRV
circadian rhythm over 24 hours. This pattern can be described
using the following circadian parameters: midline-estimating
statistic of rhythm (MESOR), a rhythm-adjusted mean; ampli-
tude, a measure of one-half the extent of variation within a day;
and acrophase, a measure of the time that overall high values
occur each day.33 The model included inflammatory and
symptomatic flare status, as well as age, sex, and BMI as
covariates. Device type was included as a fixed effect. Further
details are available in the Supplementary Materials and
Methods.

Heart Rate, Resting Heart Rate, Oxygen
Saturation of Arterial Hemoglobin, and Steps
Analysis

Linear mixed-effect models were fitted to analyze the
physiological parameters of HR, RHR, and steps for all devices,
and SpO2 solely for the Apple Watch. Metrics were analyzed on
an hourly basis (ie, HRV, SpO2, and HR) and daily basis (ie, RHR
and steps). Models include fixed effects for covariates of age,
sex, and BMI, along with inflammatory and symptomatic flare
predictors (and the interaction for Figure 2), as well as a
random intercept for each participant for per-day models, and a
random intercept nested by day for all per-hour models. These
models were fitted using the lme function from the nlme R
package.34 Furthermore, heterogeneous variances within flare
and remission stage were incorporated into our modeling with
the final model defined in terms of likelihood ratio test and
Akaike information criterion, as described above. Marginal
means with 95% CIs were estimated using the emmeans
package,35 as well as testing the hypothesis of interests, namely,
differences between flare stages through contrasts. To evaluate
the effect of the presence or absence of nocturnal or daytime
wearable data on outcomes, we performed a sensitivity anal-
ysis. RHR collected at night vs RHR collected over 24 hours did
FLA 5.7.0 DTD � YGAST66585_proof �
not result in significant differences (results not presented) in
outcomes, demonstrating the negligible effect of the presence
or absence of nocturnal data.

Physiological Parameters as an Early Signal of
Flares

Mixed-effect logistic regression was used to evaluate the
temporal association of various physiological parameters, or
their combination, in determining the probability of experi-
encing flare-ups on the same day or before the flare-up periods
occurs. Specifically, for each flare definition, we evaluated the
changes in the physiological parameter taken at 7, 14, 21, 28,
35, 42, and 49 days before inflammatory or symptomatic flares.
To evaluate models’ performance, specificity, sensitivity, accu-
racy, precision, recall, area under precision-recall curve
(AUPRC), area under the curve (AUC), and the F1-score were
estimated. Further details are available in the Supplementary
Materials and Methods.
Results
Cohort Characteristics

A total of 309 participants consented and contributed
both wearable device and survey data across 36 states
within the United States. Participants mean (SD) age was
39.9 (14.4) years and 208 (67.3%) were female. One hun-
dred ninety-six participants had CD and 113 had UC. The
mean (SD) duration of follow-up was 213 (156) days. Two
hundred fifty-five participants wore an Apple Watch, 53
participants wore a Fitbit, and 16 participants wore an Oura
Ring; some participants used 2 types of devices during the
study period (Table 1). In total, 120 devices were loaned to
participants (107 Apple Watches and 13 Fitbits). There
were 152 days in inflammatory flare and 999.7 seven-day
periods defined as symptomatic flares. Symptomatic and
inflammatory trajectories of each participant are illustrated
in Supplementary Figure 2. Statistics for mean wearable
device use are presented in Supplementary Table 1.

Identification of Inflammatory Flares
HRV differentiated inflammatory flares compared with

inflammatory remission, with significant differences in the
circadian pattern of HRV measurements observed across
device types (Figure 1A). The MESOR of the circadian
pattern of SDNN was lower (39.26 ms; 95% CI, Q36.69–42.10
ms) during an inflammatory flare compared with periods of
inflammatory remission (41.06 ms; 95% CI, 38.65–43.80
ms; P < .0001). There were no differences in the acrophase
(P ¼ .40), amplitude (P ¼ .87), or time to peak (P ¼ .40) of
the circadian measurements. There was a significant dif-
ference in the MESOR (38.31 ms; 95% CI, 32.63–44.58 ms;
P ¼ .03) of the circadian pattern of RMSSD in participants in
an inflammatory flare compared with those without
inflammation (MESOR: 35.87 ms; 95% CI, 29.88–42.41 ms).
There was no difference in the acrophase (P ¼ .07),
amplitude (P ¼ .15), or peak time (P ¼ .07).

Physiological data differentiated inflammatory periods
from noninflammatory periods in participants with IBD
1 February 2025 � 3:57 pm � ce
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Table 1.Demographic Characteristics for Study Participants

Characteristic
Participants with
CD (n ¼ 196)

Participants with
UC (n ¼ 113)

Overall cohort
(n ¼ 309)

Age, y, mean (SD) 39.6 (14.3) 40.5 (14.7) 39.9 (14.4)
Missing values, n (%) 0 (0) 1 (0.9) 1 (0.3)

Sex, female, n (%) 134 (68.4) 74 (65.5) 208 (67.3)

BMI, mean (SD) 25.7 (5.51) 25.7 (5.63) 25.7 (5.54)
Missing values, n (%) 10 (5.1) 9 (8.0) 19 (6.1)

Race, n (%)
Asian 7 (3.6) 7 (6.2) 14 (4.5)
Black 3 (1.5) 3 (2.7) 6 (1.9)
Native American 2 (1.0) 1 (0.9) 3 (1.0)
White 178 (90.8) 100 (88.5) 278 (90.0)
Missing values 6 (3.1) 2 (1.8) 8 (2.6)

Ethnicity, n (%)
Hispanic 11 (5.6) 7 (6.2) 18 (5.8)
Not Hispanic 179 (91.3) 101 (89.4) 280 (90.6)
Missing values 6 (3.1) 5 (4.4) 11 (3.6)

Smoking status, n (%)
Current 6 (3.1) 3 (2.7) 9 (2.9)
Never 146 (74.5) 91 (80.5) 237 (76.7)
Past smoker 42 (21.4) 19 (16.8) 61 (19.7)
Missing values 2 (1.0) 0 (0) 2 (0.6)

Reported medical conditions, n (%)
Asthma 27 (13.8) 8 (7.1) 35 (11.3)
History of cancer 9 (4.6) 3 (2.7) 12 (3.9)
Chronic kidney disease 2 (1.0) 0 (0) 2 (0.6)
Chronic lung disease 2 (1.0) 1 (0.9) 3 (0.9)
Diabetes mellitus 3 (1.5) 1 (0.9) 4 (1.3)
Hypertension 9 (4.6) 5 (4.4) 14 (4.5)
No medical conditions 141 (71.9) 91 (80.5) 232 (75.1)

History of IBD-related surgery, n (%)
No 95 (48.5) 109 (96.5) 204 (66.0)
Yes 97 (49.5) 4 (3.5) 101 (32.7)

Missing values 4 (2.0) 0 (0) 4 (1.3)

IBD medications use at enrollment, n (%)
Mesalamines 15 (7.7) 35 (31.0) 50 (16.2)
Corticosteroids 16 (8.2) 19 (16.8) 35 (11.3)
Biologic agents 129 (65.8) 37 (32.7) 166 (53.7)
Small molecules 0 (0) 6 (5.3) 6 (1.9)
Immune modulators 17 (8.7) 5 (4.4) 22 (7.1)
No medication reported 8 (4.1) 5 (4.4) 13 (4.2)

CD location, n (%)
L1 89 (45.4) — —

L2 25 (12.8) — —

L3 74 (37.8) — —

L4 47 (24.0) — —

CD behavior, n (%)
B1 39 (19.9) — —

B2 102 (52.0) — —

B3 55 (28.1) — —

Perianal modifier 59 (30.1) — —

UC location, n (%)
Left-sided disease — 39 (34.5) —

Extensive colitis — 38 (33.6) —

Proctitis — 11 (9.7) —

- 2025 Wearable Devices and IBD Flares 5
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Figure 1. The relationship between physiological metrics collected from wearable devices and inflammatory and symptomatic
flares. (A) HRV circadian patterns during periods of inflammatory flares compared with periods of inflammatory remission with
means and 95% CI for HRV measures. (B) The HR, RHR, SpO2, and daily steps during periods of symptomatic and inflam-
matory flares compared with periods of remission. (C) HRV circadian patterns during periods of symptomatic flares compared
with periods of symptomatic remission with estimated marginal means and 95% CIs for HRV parameters. Stars represent the
comparison between flare and remission states. þP � .1; *P � .05; **P � .01; ***P � .001; ****P � .0001.
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(Figure 1B). Mean (SEM) HR and RHR were higher during
inflammatory flares (HR: 79.31 [0.92] beats/min; RHR:
65.30 [0.80] beats/min) and daily steps were fewer (steps:
5082 [0.02]) compared with periods of inflammatory
remission (HR: 78.92 [0.92] beats/min; P ¼ .03; RHR: 64.64
[0.78] beats/min; P ¼ .02; steps: 5507 [0.02]; P ¼ .01).
Mean (SEM) SpO2 was not different during inflammatory
FLA 5.7.0 DTD � YGAST66585_proof �
flares (96.52% [0.14%]) compared with periods of inflam-
matory remission (96.49% [0.13%]; P ¼ .61).
Identification of Clinical Flares
Inflammatory bowel disease. Physiological metrics

differentiate symptomatic flares from symptomatic
1 February 2025 � 3:57 pm � ce
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remission in those with IBD. In participants with IBD,
including both CD and UC, there were significant differences
in the circadian pattern of HRV measurements across de-
vices and measurement types. The amplitude of the circa-
dian pattern of SDNN was higher (4.68 ms; 95% CI, 3.87–
5.60 ms) during symptomatic flares compared with periods
without symptoms (3.69 ms; 95% CI, 2.96–4.51 ms; P ¼
.006) (Figure 1C). There was no difference in the acrophase
(P ¼ .66), MESOR (P ¼ .26), or peak time (P ¼ .66) of the
circadian pattern of HRV. There were no differences
observed in the circadian pattern of RMSSD during symp-
tomatic flares compared with periods without symptoms
(MESOR, P ¼ .81; amplitude, P ¼ .96; acrophase, P ¼ .96;
peak time, P ¼ .96).

Mean (SEM) HR and RHR were higher during symp-
tomatic flares (HR: 78.32 [0.68] beats/min; RHR: 64.60
[0.62] beats/min) compared with periods of symptomatic
remission (HR: 77.89 [0.68] beats/min; P < .0001; RHR:
64.11 [0.61]; P ¼ .0009) (Figure 1B). Mean (SEM) daily
steps and SpO2 were not different during symptomatic
flares (steps: 5564 [0.02]; SpO2: 96.50% [0.11%]) compared
with periods in symptomatic remission (steps: 5649 [0.02];
P ¼ .32; SpO2: 96.55% [0.10]; P ¼ .10).

Crohn’s disease. In participants with CD, there were
no differences in the circadian pattern of SDNN (MESOR,
P ¼ .83; amplitude, P ¼ .44; acrophase, P ¼ .40; peak time,
P ¼ .40) or RMSSD (MESOR, P ¼ .06; amplitude, P ¼ .38;
acrophase, P ¼ .65; peak time, P ¼ .65) during a symp-
tomatic flares compared with symptomatic remission. Mean
(SEM) daily steps were not different between symptomatic
flares of CD compared with periods of symptomatic remis-
sion (5193 [0.02] vs 5385 [0.02], respectively; P ¼ .11).
There was no significant difference in mean (SEM) HR
(78.10 [0.92] beats/min vs 78.08 [0.91] beats/min,
respectively; P ¼ .88) and RHR (64.69 [0.85] vs 64.55
[0.84]; P ¼ 0.58) between the 2 states. However, SpO2 was
significantly lower during symptomatic flares compared
with periods of symptomatic remission (96.44% [0.14%] vs
96.63% [0.14%], respectively; P ¼ .0002) between the 2
states (Figure 1B).

Ulcerative colitis. In participants with UC, the circa-
dian pattern of SDNN significantly differed between periods
of symptomatic flare compared with periods of remission.
There was a significant difference in the amplitude (P ¼
.002) of the circadian pattern of SDNN between periods of
symptomatic flares (5.30 ms; 95% CI, 4.07–6.67 ms) and
symptomatic remission (3.76 ms; 95% CI, 2.81–4.97) ms),
although there were no differences seen in the other circa-
dian features of HRV (MESOR, P ¼ .24; acrophase, P ¼ .89;
peak time, P ¼ .89). Differences in the circadian patterns of
RMSSD were able to differentiate periods of symptomatic
flare (MESOR, 37.34 ms; 95% CI, 28.71–46.06 ms)
compared with symptomatic remission (34.52 ms; 95% CI,
25.90–43.16 ms; P < .0001). Daily steps did not differ
during symptomatic flares of UC compared with periods of
symptomatic remission (mean [SEM] steps: 6103 [0.02] vs
6079 [0.02], respectively; P ¼ .85). There was a significant
increase in mean (SEM) HR (78.89 [1.04] beats/min vs
78.20 [1.04] beats/min, respectively; P < .0001) and RHR
FLA 5.7.0 DTD � YGAST66585_proof �
(64.53 [0.92] beats/min vs 63.81 [0.91] beats/min; P ¼
.0001) during symptomatic flares compared with periods of
symptomatic remission. There was no difference in mean
(SEM) SpO2 (96.56% [0.16%] vs 96.53% [0.16%], respec-
tively; P ¼ .40) between periods of symptomatic flare and
remission (Figure 1B).

Interactions Between Symptoms and Inflammation
We sought to determine whether physiological metrics

collected from wearable devices can differentiate the pres-
ence and absence of symptoms and underlying inflamma-
tion. The MESOR (P < .0001), acrophase (P < .0001), and
peak time (P < .0001) of SDNN significantly differed be-
tween periods of symptomatic and inflammatory flare
compared with periods with symptomatic flare but no
inflammation (Supplementary Table 2), thus identifying
whether inflammation is present or absent during symp-
tomatic periods. In addition, there was a significant differ-
ence in the MESOR (P < .0001), acrophase (P ¼ .03), and
peak time (P ¼ .03) of the circadian pattern of SDNN during
periods with and without symptomatic flares in the pres-
ence of underlying inflammation. There were no significant
differences seen in the circadian pattern of SDNN during
periods in symptomatic remission and underlying inflam-
mation compared with periods in both symptomatic and
inflammatory remission. There were no differences in the
MESOR, amplitude, acrophase, or peak time of the circadian
pattern of SDNN in participants with a symptomatic flare
compared with those in symptomatic remission, if there was
no underlying inflammatory flare (P > .05) (Figure 2A).

Similar findings were observed when evaluating other
physiological metrics collected from the wearable devices.
Periods with symptomatic flares and inflammatory flares
compared with periods with symptomatic flares but in in-
flammatory remission were differentiated by mean (SEM)
RHR (67.20 [1.09] beats/min vs 65.28 [0.96] beats/min,
respectively; P ¼ .006) and HR (81.08 [1.02] vs 78.43 [1.00]
beats/min, respectively; P < .001), but not SpO2 (96.35%
[0.20%] vs 96.13% [0.17%], respectively; P ¼ .07).
Comparing periods of symptomatic remission and inflam-
matory flare to periods with no symptoms and no inflam-
mation, there was no difference in mean (SEM) RHR and HR
(64.60 [0.96] beats/min vs 64.40 [0.92] beats/min,
respectively, P ¼ .62; 77.57 [1.00] vs 77.64 [0.99] beats/
min, respectively; P ¼ .82). However, mean (SEM) SpO2 was
able to differentiate these 2 states (96.26% [0.19] vs
96.52% [0.17%], respectively; P ¼ .04). Mean (SEM) RHR,
HR, and SpO2 were able to differentiate periods of symp-
tomatic flare compared with symptomatic remission if there
was no inflammation present (65.28 [0.96] beats/min vs
64.40 [0.92] beats/min; P ¼ .03; 78.43 [1.00] beats/min vs
77.64 [0.99] beats/min; P ¼ .003; 96.13% [0.17%] vs
96.52% [0.17%]; P < .0001, respectively) (Figure 2B).

Change Preceding Inflammatory and Symptom
Flares

Physiological metrics were evaluated for their changes
7, 14, 21, 28, 35, 42, and 49 days before flares of IBD
1 February 2025 � 3:57 pm � ce
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Figure 2. Analysis of physiological metrics by both inflammatory and symptom status in participants using the Apple Watch
(HRV, SpO2) and all devices (HR, RHR). (A) The mean HRV circadian patterns for each interaction state is presented and the
estimated marginal means and 95% CIs for HRV metrics measured during each state are shown. (B) HR, RHR, and SpO2
metrics stratified based on each inflammatory and symptom status with estimated marginal means and 95% CIs for HRV
measures. Stars atop the upper 95% CI are comparisons with the symptomatic and inflammatory flare (purple) group. Stars
under the lower 95% CI are comparisons with symptomatic and inflammatory remission (pink) group. Other comparisons are
indicated in black. þP � .1; *P � .05; **P � .01; ***P � .001; ****P � .0001
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(Figure 3A). Analysis was limited to Apple Watch–derived
metrics to enable direct comparison of the changes in
measured metrics before flares. HRV (SDNN), HR, RHR,
steps and SpO2, as well as models combining these metrics,
maintained high F1 scores throughout the 49-day period
before inflammatory and symptomatic flares (Figure 3B). F1
scores balance precision and recall and are optimal for
evaluating imbalanced datasets. When evaluating the phys-
iological parameters that were analyzed on a per-day basis
FLA 5.7.0 DTD � YGAST66585_proof �
(ie, HR, steps, and RHR), a model including all metrics
maintained an F1 score of 0.88 at 49 days preceding iden-
tification of inflammatory flares (49 days before flare: AUC,
0.98; 95% CI, 0.97–0.99; F1, 0.88; AUPRC, 0.55; sensitivity,
0.92; specificity, 0.94) (Supplementary Figure 3A and B,
Supplementary Table 3). Similar results were found when
evaluating physiological parameters analyzed on a per-hour
basis (ie, HRV, HR, and SpO2). A model including all of these
metrics had an F1 score of 0.90 at 49 days preceding
1 February 2025 � 3:57 pm � ce

959

960



w
e
b
4
C
=
F
P
O

Figure 3. (A) Association of early physiological metric (taken 7, 14, 21, 28, 35, 42, and 49 days before flare periods) with
subsequent inflammatory and symptomatic flares up to 7 weeks before the events were assessed. (B) The F1 value sum-
marizes the performance of the model that includes individual physiological metrics or a combination of them at each time
point. The F1 score balances precision and recall and is optimal for evaluating imbalanced datasets. The F-score ranges from
0.0 to 1.0, representing perfect precision and recall. The number of physiological data points analyzed at each time point is
listed at each time interval. Solid lines represent physiological metrics analyzed on a per-hour basis. Dashed lines represent
metrics analyzed on a per-day basis.
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identification of inflammatory flares (49 days before flare;
AUC, 0.99; 95% CI, 0.99–0.99; F1, 0.90; AUPRC, 0.60;
sensitivity, 0.91; specificity, 0.97) (Supplementary Table 4).
The F1 scores for symptomatic flares were similarly high
and largely stable over the 49 days before flare
(Supplementary Figure 3A and B). A model including the
parameters measured on a per-day basis (ie, HR, steps, and
RHR) had an F1 score of 0.83 at 49 days preceding the flare
event (49 days before flare; AUC, 0.96; 95% CI, 0.96–0.97;
F1, 0.83; AUPRC, 0.46; sensitivity, 0.89; specificity, 0.87)
(Supplementary Table 5). Similar results were found for the
FLA 5.7.0 DTD � YGAST66585_proof �
parameters measured on a per-hour basis (ie, HRV, HR, and
SpO2). A model including these parameters had an F1 score
of 0.81 at 49 days before the flare event (49 days before
flare; AUC, 0.96; 95% CI, 0.96–0.96; F1 0.81; AUPRC, 0.49;
sensitivity 0.90; specificity 0.86) (Supplementary Table 6).
Discussion
The IBD Forecast study demonstrates the feasibility of

identifying and predicting IBD flares using noninvasive
commonly used wearable technologies. We observed that
1 February 2025 � 3:57 pm � ce
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the physiological metrics collected from wearable devices
are altered up to 7 weeks before the development of in-
flammatory and symptomatic flare periods. This is the first
study, to our knowledge, that demonstrates that wearable
devices can identify the worsening of a chronic inflamma-
tory disease, as well as differentiate whether underlying
inflammation is present in symptomatic and asymptomatic
individuals.

IBD monitoring relies on cross-sectional and often
invasive or inconvenient means to assess disease activity.
This results in long periods during which no disease as-
sessments occur. Furthermore, there is no convenient
means to predict the development of inflammation or dis-
ease flares. The advancement of digital technologies pro-
vides an opportunity for frequent, passive, and real-time
assessments of an individual’s physiological status, filling in
the data gaps generated by traditional disease assessments.
The ability of wearable devices to passively collect data,
coupled with their popularity, has generated increasing in-
terest in their use to monitor health and disease.

Optical and actigraphy sensors on wearable devices can
frequently measure several important physiological metrics.
ANS dysfunction, characterized by an uncoupling of the ANS
and hypothalamic–pituitary–adrenal axis, has been found in
individuals with IBD, with greater degrees of dysregulation
seen in individuals with active disease compared with
remission.36 Indirect measures of ANS activity, specifically
HRV, have been cross-sectionally correlated to IBD activity
in several studies. IBD is associated with overall decreases
in HRV indices, with this inverse relationship strongest for
the PNS.15 Our group furthered these observations by
demonstrating a longitudinal relationship between inflam-
mation and SNS tone, and an inverse relationship between
inflammation and parasympathetic tone.17 HR is similarly
affected by the ANS through innervation of the sinoatrial
node of the heart, with the SNS increasing.16 Thus, physio-
logical metrics that are measured by wearable devices are
altered by ANS dysfunction and the SNS activation seen with
active inflammation in IBD. The ability of such metrics to
identify and predict underlying inflammatory events has
been demonstrated in studies using wearable devices for
the identification and prediction of COVID-19 infections.
Such studies demonstrated significant increases in RHR and
mean HR and altered HRV circadian patterns during and
before an infection.31,37–39

We similarly observed significant changes in the physi-
ological metrics measured by wearable devices during IBD
flares. There were significant changes in HRV circadian
patterns, which differentiate periods of inflammation from
remission. The MESOR of the circadian pattern for SSDN
was lower during flares, reflecting increased sympathetic
tone. Furthermore, when evaluating the RMSSD metric, we
noted other changes in the HRV circadian pattern, demon-
strating an overall alteration of ANS activity. An increase in
mean HR and RHR were observed during periods of
inflammation. Similar changes in all 3 physiological metrics
were observed during symptomatic flares.27–29 Interest-
ingly, we found that daily steps were lower during inflam-
matory flares, however, we did not find a difference in steps
FLA 5.7.0 DTD � YGAST66585_proof �
with symptomatic flares. This observation is in line with 1
unpublished study demonstrating lower steps the week
before inflammatory marker elevation.40 Although this
warrants further evaluation, an interpretation of daily steps
can be challenging, as physical activity measurements are
prone to bias due to device nonadherence and are not
measuring a physiological parameter.

Beyond the identification of flares, we found that phys-
iological metrics collected from wearable devices can iden-
tify inflammatory and clinical flares up to 7 weeks early.
This observation highlights that measurable physiological
changes occur before the development of flare events.
Similar observations have been made with FC, which can
rise 6 months before the development of clinical flares.41

This supports our observation that there can be a lag time
between physiological status and flare. In the case of
wearable-based metrics, this change preceding flares may
similarly be secondary to the development of subclinical
inflammation, which alters ANS activity, and the parameters
measured by wearable devices that it impacts. One limita-
tion of our study design is that regular inflammatory as-
sessments are not obtained, precluding determination of
when individuals transition from remission to flare. To
address this limitation, our group is evaluating transitions
between remission and flare states and their impact on
wearable-based metrics, to further explore this finding.

The physiological source for many wearable-based bio-
markers creates an opportunity to better characterize the
disease status of individuals with IBD. There is discordance
between symptoms and inflammation in IBD.42,43 We
observed that HRV, HR, and RHR were able to differentiate
the presence or absence of inflammation in symptomatic
individuals. This analysis demonstrates that in IBD, inflam-
mation is a primary driver of the changes in wearable
measured physiological metrics. However, our observation
that HR and RHR could differentiate symptomatic from
asymptomatic periods, even in the absence of inflammation,
shows that symptoms alone have some impact on physio-
logical parameters. Further evaluation of this observation is
needed to understand the degree and contribution of
symptoms and inflammation on wearable-derived metrics.
Interestingly, we observed that differences in systemic ox-
ygen levels were predictive of inflammatory and clinical
disease flares. Although the intestinal epithelium is normally
in a state of relative hypoxia, which is exacerbated during
active inflammation, there have not been descriptions of
systemic oxygen levels measured during disease flares.44

The pathophysiology explaining this observation is not
clear, and may be secondary to alterations of the oxygen
saturation curve, which result in slight changes in pulse
oximetry measurements, which can be secondary to carbon
dioxide concentrations, acid–base status, and
temperature.45

Our findings demonstrate the possibility of digitally
collected physiological metrics to serve as a novel
biomarker of disease activity. Although there is no gold
standard for detecting IBD flares, monitoring using wear-
able devices may potentially be better, given their contin-
uous and physiological grounding. Although the
1 February 2025 � 3:57 pm � ce
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physiological changes we observed during periods of flare
differed significantly compared with periods of remission,
the absolute differences in these values were small. These
small differences, however, are often sufficient for individ-
ual flare detection via machine learning and deep learning
algorithms. This has been performed in other conditions
with similar findings, resulting in a clinically relevant
outcome.37,46 Other areas warranting further exploration
include the utility of wearable biomarkers to identify and
predict IBD medication response,47 as well as their ability to
serve as future end points in clinical trials.

There are several limitations to our study. First, the
physiological metrics measured by the wearable devices are
not specific and can be impacted by other factors, including
intercurrent conditions. To mitigate this with regard to HRV,
we controlled for the covariates of BMI, age, and sex in our
analysis. However, this is an important area that requires
further study and validation. In addition, inflammatory as-
sessments were collected as part of standard of care eval-
uations. This limits our ability to determine when an
individual transitions from inflammatory remission to in-
flammatory flare. To address this limitation, we imputed
blood and stool results ±7 days around each collection time
point, to account for the fact that, in IBD, inflammatory
markers are elevated for extended periods of time around
flares.48 However, because we do not know when in-
dividuals transition from remission to inflammation, there is
the potential for the misclassification of disease activity
periods. Similarly, several potential definitions can be used
to determine periods of symptomatic flare compared with
symptomatic remission. This includes assumptions around
the number of daily surveys that need to be answered per 7-
day period, and the number of surveys consistent with
symptomatic activity in a 7-day period needed to classify that
period as “flare.” Although we explored this in a sensitivity
analysis, there are no well-defined definitions in the literature,
therefore, leading to the potential to misclassify symptomatic
periods. In addition, there is a limitation in our mixed-effect
logistic regression models used to predict flare-ups from
physiological data. Overall, the study dataset is imbalanced,
with a high prevalence of both inflammatory and symptomatic
remission states compared with flare events. Furthermore,
many flares occur within the same individuals. This low
variability within patients can result in some biasing of the
model’s outcome and AUC results. However, we settled on this
approach, as the dataset contains repeated measures, with
individuals contributing multiple outcomes (ie, flares). An
additional limitation is that the impact of medication is not
controlled in the analyses. There is significant variation in
medication type, dose, frequency, and the timing of medica-
tion changes. There are variations in how the medications
overlap with provided symptomatic and inflammatory as-
sessments. This makes it challenging to control for medica-
tions in the analysis. Lastly, digital study cohorts have been
found to differ in comparison with nondigital study cohorts,
including in composition and adherence to chronic medical
management. Although this is a limitation to all digital studies,
it is important to recognize the potential for bias or non-
generalizability of results that this can introduce.
FLA 5.7.0 DTD � YGAST66585_proof �
We found that physiological metrics collected longitu-
dinally from wearable devices can identify and change
before the development of inflammatory and symptomatic
disease flares. Furthermore, physiological metrics can
differentiate whether there is underlying inflammation
present during symptomatic flares. These findings support
the further evaluation of wearable devices in the monitoring
of IBD.
Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at http://doi.org/10.1053/
j.gastro.2024.12.024.
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Supplementary Materials and Methods

Wearable Devices and Physiological Metrics
All of the devices (ie, Apple Watch, Fitbit, and Oura Ring)

contain 3-axis accelerometer signals that track motion, such
as the number of steps per day. In addition, the 3 devices can
calculate HRV. They can record time series peaks correlating
with each heartbeat via their photoplethysmography optical
sensor and are used to determine inter-beat intervals and,
therefore, HRV. The Apple Watch specifically calculates each
measurement of SDNN during a 60-second window
throughout each 24-hour period, and Fitbit and Oura ring
capture HRV readings every 5 minutes during periods of
sleep. Our team acquired Fitbit-derived HRV data every 5
minutes during periods of sleep. Regarding oxygen assess-
ment by the Apple Watch, the red to infrared modulation ratio
is determined through the optical sensor, which correlates
with the color of the underlying skin’s arterial blood and is
translated into the SpO2 percentage.

Quality-control procedures were applied to each physi-
ological variable, removing values outside expected physi-
ological ranges, and assigned as a missing value. Limits
outside the following ranges for each variable were assigned
as missing values: SpO2, 85%–100%; HR, 30–220 beats/
min; RHR, 30–150 beats/min; steps, <0 steps/d; and HRV
(SDNN, RMSSD), 5–300 ms.

Cosinor Models
HRV, among other physiological processes, follows a circa-

dian pattern.e1 Many wearable devices, including the Apple
Watch, Fitbit, and Oura Ring, do not collect data continuously
over 24-hour periods. HRV, as well as other physiological
metrics, are collected sparsely and in a nonuniform manner.
Therefore, traditional evaluations of HRV, such as calculation of
its mean or range of values, fail to account for the circadian
nature of the measurements and the dynamic changes in this
pattern that occur in response to physiological events, such as
flare. In addition, given the sparse and nonuniform measure-
mentQ26 of HRV by wearable devices, such evaluations would
introduce bias. Therefore, techniques that can model such
datasets are needed for wearable-based physiological metrics.
Daily circadian rhythms can be modeled using Cosinor
methods. Cosinor methods have frequently been applied to
evaluate HRV.e2-e4 To account for longitudinal changes in
circadian patterns, our team extended these Cosinor models to
include a mixed-effect model framework.32

As described in the Materials and Methods section of the
main text, the nonlinear Cosinor model can be used to
describe circadian features, including the adjusted mean
(MESOR) of the circadian pattern, the maximum change or
height of the circadian pattern (MESOR), and the time the
maximum amplitude or peak is achieved (acrophase).

Cosinor mixed-effect models can be described through
the following linear model:

yiðtÞ ¼ Mþ a0ci þðbþ a1ciÞxiðtÞþ ðgþ a2ciÞziðtÞ
þ qiwiðtÞ þ eðtÞ (1)

where yi(t) is the vector of hourly (t) observations every day
related to HRV, M is the midline statistic of rhythm or
overall rhythm-adjusted mean (MESOR), b and g are the
vectors of fixed effects related to nonlinear parameters:
amplitude (A), representing the maximum change from the
MESOR within a day, and the acrophase (f) representing the
time the amplitude is reached (peak ¼ –f * 24 / 2p). Those
parameters are linearly represented as b ¼ A cosðf) and
g ¼ A sinðf). a0, a1, and a2 are fixed effects associated with
the vector of covariates c, which included the inflammatory/
symptomatic flare status as well as age, sex, and BMI as
covariates. In addition, when modeling data from multiple
devices, the type of device was included as a fixed effect. q is
the vector of random effects and e are the model residuals.
All models considered a random intercept (MESOR) across
participants, and we evaluated whether the additional
random effects for b and g (associated with the x½t� and z½t�
components) improved model fitting. Models with different
random effects were compared using the likelihood ratio
test, where whether the test yielded significance, the model
exhibiting a lower Akaike information criterion Q27was selected.
Otherwise, if the likelihood ratio test yielded no significance,
the most parsimonious model would be chosen.31

Physiological Parameters as an Early Signal of
Flares

The mixed-effect logistic regression was evaluated
through the following model:.

logitðPðFlaretþi ¼ 1jXtÞÞ ¼ b0 þb1Xit þ uiZi þ eit (2)

where Flaret þ i represents the occurrence of a flare on day
t þ i with i ¼ 7;14;21;28;35;42;and 49. b0 and b1 are the
coefficients of the model, representing the intercept and the
effect of the covariates and predictors, respectively, on the
log-odds of the response and ui represents the random
effect across participants. In general, given the
physiological measures on day t, the model fits the
probability of experiencing a flare on day t þ i. Models
were fit using glmer function from lme4 package.e5
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Supplementary Figure 1. The relationship between several symptomatic disease flare criteria was explored. This is given the
absence of evidence supporting specific criteria for symptomatic flares derived from daily symptom assessments. The
circadian features of HRV were estimated (as explained in Materials and Methods section) and stratified based on the number
of questionnaires answered and the number of surveys consistent with a symptomatic flare, within a 7-day window. The
number of surveys required to be completed in a 7-day window is listed in each box and ranges from 2 to 4 surveys. Within
each of these periods, the circles denote having a minimum of 2 symptomatic days, and triangles denote a minimum of 3
symptomatic days defining flare, red (blue) color indicates an increase (decrease) in the physiological measures during flare
compared with remission periods, the size of the symbols represents the level of significance (scaled as -log10[P]) with darker
colors representing significant changes at .05 level. This was evaluated for UC (using 2 PRO-2 scoring cutoffs), CD, and IBD
(both conditions combined). MESOR, midline statistic of rhythm; acrophase, representing the time the amplitude is reached
(peak time ¼ –f*24/2p); amplitude, representing the maximum change from the MESOR within 1 day.
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Supplementary Figure 2. Symptom and inflammatory activity of each participant over the study period. The x-axis denotes
each day that a participant was in the study, with day 0 denoting the day of first data collection. Each line along the y-axis
denotes an individual study participant. Colors denote the symptom and inflammatory activity.
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Supplementary Figure 3. (A) The AUC with means and 95% CIs and (B) AUPRC represent the performance of models that
incorporate individual physiological metrics or combinations thereof at each time point (taken at 7, 14, 21, 28, 35, 42, and 49
days before flare periods). Sample sizes used in each metric are indicated at each time point. Solid lines represent physio-
logical metrics analyzed on a per-hour basis. Dashed lines represent metrics analyzed on a per-day basis.
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