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BACKGROUND AND AIMS: Next-generation sequencing (NGS)
BACKGROUND AND CONTEXT

While previous studies have shown targeted next-
generation sequencing is a useful adjunct to the
preoperative evaluation of pancreatic cysts, these
studies have largely been retrospective analyses, single
institutional experiences, and focused on intraductal
papillary mucinous neoplasms.

NEW FINDINGS

Through prospective, real-time, multi-institutional next-
generation sequencing (PancreaSeq) of a large patient
cohort, a diverse number of genomic alterations were
identified in intraductal papillary mucinous neoplasms
(eg, BRAF), serous cystadenomas (eg, TP53 and TERT),
and pancreatic neuroendocrine tumors (eg, loss of
heterozygosity of multiple genes) and are of associated
clinical significance.

LIMITATIONS

Considering most pancreatic cysts follow a benign clinical
course, diagnostic surgical pathology was available for
14% of tested patients. However, clinical follow-up with
a median of 23 months was available for an additional
52% of patients.

IMPACT

The results of this study support the clinical utility of
targeted next-generation sequencing in the evaluation of
not only pancreatic mucinous cysts, but other cyst
types. This study also broadens the number of genomic
alterations that characterize pancreatic cysts.

* Authors share co-first authorship; § Authors contributed equally to this
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of pancreatic cyst fluid is a useful adjunct in the assessment of
patients with pancreatic cyst. However, previous studies have
been retrospective or single institutional experiences. The aim
of this study was to prospectively evaluate NGS on a multi-
institutional cohort of patients with pancreatic cyst in real
time. METHODS: The performance of a 22-gene NGS panel
(PancreaSeq) was first retrospectively confirmed and then
within a 2-year timeframe, PancreaSeq testing was prospec-
tively used to evaluate endoscopic ultrasound–guided fine-
needle aspiration pancreatic cyst fluid from 31 institutions.
PancreaSeq results were correlated with endoscopic ultrasound
findings, ancillary studies, current pancreatic cyst guidelines,
follow-up, and expanded testing (Oncomine) of postoperative
specimens. RESULTS: Among 1933 PCs prospectively tested,
1887 (98%) specimens from 1832 patients were satisfactory
for PancreaSeq testing. Follow-up was available for 1216 (66%)
patients (median, 23 months). Based on 251 (21%) patients
with surgical pathology, mitogen-activated protein kinase/
GNAS mutations had 90% sensitivity and 100% specificity for a
mucinous cyst (positive predictive value [PPV], 100%; negative
predictive value [NPV], 77%). On exclusion of low-level vari-
ants, the combination of mitogen-activated protein kinase/
GNAS and TP53/SMAD4/CTNNB1/mammalian target of rapa-
mycin alterations had 88% sensitivity and 98% specificity for
advanced neoplasia (PPV, 97%; NPV, 93%). Inclusion of cyto-
pathologic evaluation to PancreaSeq testing improved the
sensitivity to 93% and maintained a high specificity of 95%
(PPV, 92%; NPV, 95%). In comparison, other modalities and
current pancreatic cyst guidelines, such as the American
Gastroenterology Association and International Association of
Pancreatology/Fukuoka guidelines, show inferior diagnostic
performance. The sensitivities and specificities of VHL and
MEN1/loss of heterozygosity alterations were 71% and 100%
for serous cystadenomas (PPV, 100%; NPV, 98%), and 68% and
98% for pancreatic neuroendocrine tumors (PPV, 85%; NPV,
95%), respectively. On follow-up, serous cystadenomas with
TP53/TERT mutations exhibited interval growth, whereas
pancreatic neuroendocrine tumors with loss of heterozygosity
of �3 genes tended to have distant metastasis. None of the 965
patients who did not undergo surgery developed malignancy.
Postoperative Oncomine testing identified mucinous cysts with
BRAF fusions and ERBB2 amplification, and advanced neoplasia
with CDKN2A alterations. CONCLUSIONS: PancreaSeq was not
only sensitive and specific for various pancreatic cyst types and
advanced neoplasia arising from mucinous cysts, but also re-
veals the diversity of genomic alterations seen in pancreatic
cysts and their clinical significance.
study Q2.

Abbreviations and Acronyms: AF, allele frequency; ALT, alternative
lengthening of telomeres; CEA, carcinoembryonic antigen; EUS, endo-
scopic ultrasound; FNA, fine-needle aspiration; IPMN, intraductal papillary
mucinous neoplasm; LOH, loss of heterozygosity; MAPK, mitogen-acti-
vated protein kinase; MCN, mucinous cystic neoplasm; MGP, Molecular
and Genomic Pathology; mTOR, mammalian target of rapamycin; NGS,
next-generation sequencing; NPV, negative predictive value; PanNET,
pancreatic neuroendocrine tumor; PDAC, pancreatic ductal adenocarci-
noma; PPV, positive predictive value; SCA, serous cystadenoma; UPMC,
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he detection of pancreatic cysts by cross-sectional
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Timaging has become increasingly frequent and rep-
resents a significant public health challenge. In the United
States, it is estimated that up to 2.5% of the general popu-
lation harbors a pancreatic cyst.1,2 The prevalence of
pancreatic cysts increases with age and up to 40% of pa-
tients who are 70 years and older have a pancreatic cyst.3 In
FLA 5.6.0 DTD � YGAST65349_proof �
addition, approximately half of all pancreatic cysts are
mucinous cysts, such as intraductal papillary mucinous
neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs).
IPMNs and MCNs are noninvasive precursor neoplasms to
pancreatic ductal adenocarcinoma (PDAC).4 Consequently,
the identification of mucinous cysts is a source of psycho-
logical stress for both the patient and the physician, but
most mucinous cysts are indolent in nature and only a mi-
nority will transform into PDAC.1,5

A multidisciplinary approach is currently advocated for
the diagnosis and management of pancreatic cysts6–9;
however, the evaluation of pancreatic cyst fluid is critical to
2 November 2022 � 3:27 am � ce
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the classification of pancreatic cysts and early detection of
PDAC. Among ancillary studies, targeted DNA-based next-
generation sequencing (NGS) is a useful tool in the assess-
ment of pancreatic cysts.10–13 Mutations in the mitogen-
activated protein kinase (MAPK) genes and/or GNAS are
specific for mucinous cysts, whereas alterations in TP53,
SMAD4, and the mammalian target of rapamycin (mTOR)
genes are associated with advanced neoplasia (high-grade
dysplasia and PDAC arising from a mucinous cyst).14–17

Targeted NGS can also be used to identify other pancreatic
cyst types, such as serous cystadenomas (SCAs), solid-
pseudopapillary neoplasms, and cystic pancreatic neuroen-
docrine tumors (PanNETs) that are characterized by muta-
tions in VHL, CTNNB1, and MEN1, respectively.10,12,13,18

To date, several studies have evaluated targeted DNA-
based NGS of pancreatic cysts, but published reports have
largely been limited to retrospective analyses or single
institutional experiences.10,11,13,19 In addition, most NGS
studies have been focused on the assessment of IPMNs and
IPMN-associated PDACs. The aims of this study were to (1)
develop an expanded, targeted NGS panel (PancreaSeq) that
can improve not only the assessment of IPMNs and IPMN-
associated PDACs, but also other cyst types; (2) on confir-
mation of PancreaSeq performance using a retrospective
cohort, to prospectively evaluate a multi-institutional cohort
of pancreatic cyst patients in real time to determine the
diagnostic performance of PancreaSeq testing; and (3)
perform repeat PancreaSeq testing and expanded targeted
DNA/RNA-based NGS (Oncomine) of paired postoperative
specimens to establish concordance rates and identify
additional genomic alterations that may further improve the
assessment of pancreatic cysts.
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Methods
Study Population

Study approval was obtained from the authors’ respective
institutional review boards and the study design is outlined in
Figure 1. For retrospective PancreaSeq testing (Supplementary
Data and expected results are summarized in Supplementary
Table 1), pancreatic cyst fluid specimens with corresponding
clinical, imaging, and diagnostic surgical pathology follow-up
were obtained through searching the molecular archives of
the Molecular and Genomic Pathology (MGP) laboratory at the
University of Pittsburgh Medical Center (UPMC) and cross-
referencing the surgical pathology archives of UPMC Depart-
ment of Pathology. These retrospective molecular specimens
were previously reported in 2 large patient cohort studies.10,15

Prospective PancreaSeq testing was performed between
January 2018 and February 2020 and consisted of 1933
pancreatic cyst fluid specimens obtained by endoscopic ultra-
sound (EUS)–fine-needle aspiration (FNA) that were submitted
to the UPMC MGP laboratory from 31 medical institutions. In all
cases, the indication for PancreaSeq testing was a clinical
concern for a pancreatic cyst. Corresponding patient data were
collected to include demographics, clinical presentation, EUS
findings, fluid viscosity (as noted by the endoscopist using the
string sign), carcinoembryonic antigen (CEA) analysis and
cytopathological diagnoses. Endoscopic criterion of main duct
FLA 5.6.0 DTD � YGAST65349_proof �
dilatation was defined by a diameter �5mm. In addition, the
presence of a mural nodule was defined as a uniform echogenic
nodule of any size without a lucent center or hyperechoic rim. A
value >192ng/mL was used as a cutoff for an elevated
pancreatic cyst fluid CEA; however, CEA analysis was not
centralized and performed at the submitting institution or
reference laboratory. Cytopathologic findings were recorded
from the respective submitting institutions and malignant
cytopathology was defined as at least suspicious for adeno-
carcinoma. Diagnostic surgical pathology diagnoses were also
obtained from each participating institution and were based on
the 2019 World Health Organization (WHO) Classification of
Tumors of the Digestive System.20 Cases diagnostic for a
mucinous pancreatic cyst (IPMN and MCN) with high-grade
dysplasia and/or an associated invasive adenocarcinoma were
interpreted as “advanced neoplasia.” In comparison with Pan-
creaSeq testing, absolute surgical resection criteria for the
American Gastroenterology Association (AGA) guidelines
(cytopathologic evaluation of at least suspicious for adenocar-
cinoma and/or 2 of the following features: dilated main
pancreatic duct, >3.0 cm cyst size, and a solid component) and
2017 revised International Consensus Fukuoka (IAP/Fukuoka)
guidelines (high-risk stigmata: jaundice in a patient with a
cystic lesion of the pancreatic head, the presence of a mural
nodule, main duct dilation suspicious for involvement, and/or
cytopathologic evaluation of at least suspicious for adenocar-
cinoma) were retrospectively applied to the prospectively
collected surgical resection study cohort.7,21
Nucleic Acid Extraction
Nucleic acid extraction, as well as subsequent DNA- and

RNA-based targeted NGS, was performed within the Clinical
Laboratory Improvement Amendments– and College of Amer-
ican Pathologists–accredited MGP laboratory at UPMC. Genomic
DNA and mRNA were isolated from either pancreatic cyst fluid
obtained by EUS-FNA (preoperative specimens) or formalin-
fixed paraffin-embedded tissue (surgical resection specimens)
using the MagNA Pure LC Total Nucleic Acid Isolation Kit
(Roche, Indianapolis, IN) on the Compact MagNA Pure (Roche)
or the DNeasy Blood and Tissue kit on the automated QIAcube
instrument (QIAGEN, Germantown, MD). Extracted DNA and
RNA were quantitated on the Glomax Discover using the
QuantiFluor ONE dsDNA System and the QuantiFluor RNA
system, respectively (Promega, Madison, WI).
PancreaSeq Testing
Amplification-based targeted DNA-based NGS for Pan-

creaSeq was performed with custom AmpliSeq primers for
genomic regions of interest within AKT1, APC, BRAF, CTNNB1,
GNAS, HRAS, IDH1, IDH2, KRAS, MEN1, MET, NF2, NRAS, PIK3CA,
PTEN, STK11, TERT, TP53, TSC2, and VHL with primer se-
quences and performance characteristics as previously
described to include single nucleotide variants, insertions, de-
letions, and loss of heterozygosity (LOH)/copy number
alteration.10,12,13,22 Amplicons were barcoded, ligated with
specific adapters, and purified. DNA library quantity and
quality checks were performed using the 4200 TapeStation
(Agilent Technologies, Santa Clara, CA). The Ion Chef was used
to prepare and enrich templates and enable testing via Ion
Sphere Particles on a semiconductor chip. Massive parallel
2 November 2022 � 3:27 am � ce
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Figure 1. (A) A summary of the study design to include details of individual patient cohorts used for PancreaSeq testing (tan)
and individual analyses performed (blue). (B) Correlative genomic findings based on retrospective PancreaSeq testing of 97
preoperative pancreatic cyst fluid specimens from 63 mucinous cysts and 34 nonmucinous cysts. Among the 63 mucinous
cysts, 22 cysts also harbored high-grade dysplasia and/or invasive adenocarcinoma (advanced neoplasia). Genomic alter-
ations in KRAS, GNAS, and/or BRAF were 100% specific for mucinous cysts, whereas alterations in TP53, SMAD4, and/or the
mTOR genes were preferentially seen in mucinous cysts with advanced neoplasia. Similarly, genomic alterations in MEN1 and
VHL were highly specific for cystic PanNETs and SCAs, respectively. The mTOR genes include PIK3CA and PTEN. HGD, high-
grade dysplasia; LGD, low-grade dysplasia.
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sequencing was carried out on an Ion GeneStudio S5 Prime
System according to the manufacturer’s instructions (Thermo
Fisher Scientific, Waltham, MA) and data were analyzed with an
in-house bioinformatics program, Variant Explorer (UPMC).
Each variant was prioritized according to the 2017 AMP/ASCO/
CAP joint consensus guidelines for interpretation of sequence
variants in cancer using a tier-based system.23 Tier I, Tier II,
and Tier III variants were identified; however, only Tier I and
Tier II variants were used for subsequent analysis. The limit of
detection of the assay was at 1% mutant allele frequency (AF).
The minimum depth of coverage for testing was 1000�. For
FLA 5.6.0 DTD � YGAST65349_proof �
each mutation identified, an AF was calculated based on the
number of reads of the mutant allele versus the wild-type allele
and reported as a percentage.10 A low-level variant was clas-
sified based on a 10-fold lower AF as compared with the AF for
a MAPK/GNAS mutation.10 LOH analysis was performed as
previously described.24,25
Oncomine Testing
Expanded targeted NGS-based testing from DNA and mRNA

was also performed within the MGP lab at UPMC using the
2 November 2022 � 3:27 am � ce
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Oncomine Comprehensive Assay v3 (Oncomine) DNA and RNA
primer sets (Thermo Fisher Scientific) according to the manu-
facturer’s protocol. The Oncomine panel evaluates 161 cancer-
relevant driver genes to include 760 fusion genes. Briefly, total
DNA and mRNA that is reverse transcribed into complementary
DNA are subjected to multiplex polymerase chain reaction to
amplify the regions of interest. Amplicons were barcoded,
ligated with specific adapters, and purified. RNA library quan-
tity and quality check were performed using the 4200 TapeS-
tation (Agilent Technologies, Santa Clara, CA). The Ion Chef was
used to prepare and enrich templates and enable testing via Ion
Sphere Particles on a semiconductor chip. Massive parallel
sequencing was carried out on an Ion GeneStudio S5 Prime
System according to the manufacturer’s instructions (Thermo
Fisher Scientific) and data were analyzed with Variant Explorer
(UPMC) for single nucleotide variant, insertions, deletions, copy
number alterations, and RNA fusion genes. The limit of detec-
tion of this DNA/RNA assay was 1% to 5% neoplastic cells.

Statistical Analysis
c2 analysis or Fisher’s exact tests were used to compare

categorical data, and Mann-Whitney U test was used to
compare continuous variables. Sensitivity and specificity were
calculated using standard 2�2 contingency tables for cases
with confirmed diagnostic pathology. All statistical analyses
were performed using the SPSS Statistical software, V.26 (IBM,
Armonk, NY) and statistical significance was defined as a P
value of <.05.
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Results
Retrospective PancreaSeq Testing of 97 Patients
With Diagnostic Surgical Pathology

A retrospective diagnostic performance confirmation
cohort of 97 patients who underwent EUS-FNA for a
pancreatic cyst and had follow-up diagnostic surgical pa-
thology was evaluated using an expanded NGS panel (Pan-
creaSeq) of 22 pancreatic cyst-associated genes
(Supplementary Data and expected results are summarized
in Supplementary Table 1). The results of retrospective
PancreaSeq testing are summarized in Figure 1 (and
Supplementary Table 2). Genomic alterations in KRAS, GNAS,
and/or BRAF were detected in 56 of 63 (89%) mucinous
cysts. Among mucinous cysts with advanced neoplasia, al-
terations in TP53, SMAD4, and the mTOR genes were iden-
tified in 19 of 22 (86%) cases. Further, 3 of 31 (10%) IPMNs
with low-grade dysplasia harbored PIK3CA (n ¼ 2) and
TP53 (n ¼ 1) mutations; but, in comparison with KRAS
missense mutations, alterations in PIK3CA and TP53 were at
a lower AF (low-level). Mutations in VHL and MEN1 were
also seen, but specific to SCAs (1 of 2, 50%) and cystic
PanNETs (2 of 9, 22%), respectively. Twenty-three non-
neoplastic cysts were negative for genomic alterations. The
sensitivity and specificity of MAPK/GNAS alterations for a
mucinous cyst was 89% and 100%, respectively. In addi-
tion, mutations in GNAS and/or BRAF were 100% specific
for IPMNs. In conjunction with MAPK/GNAS mutations, al-
terations in TP53, SMAD4, and the mTOR genes had 86%
sensitivity and 96% specificity for a mucinous cyst with
FLA 5.6.0 DTD � YGAST65349_proof �
advanced neoplasia. However, on exclusion of low-level
TP53 and PIK3CA mutations, the sensitivity and specificity
for advanced neoplasia was 86% and 100%, respectively.
Prospective, Real-Time, Multi-institutional
PancreaSeq Testing of 1832 Patients

Prospective PancreaSeq testing was attempted for 1933
EUS-FNA obtained pancreatic cyst fluid specimens from
1889 patients and collected from 31 institutions over a 2-
year time frame. Sufficient DNA for PancreaSeq testing
was identified in 1887 (98%) specimens from 1832 patients
(Supplementary Table 3). Two pancreatic cysts were
sampled for 55 (3%) patients at the same EUS-FNA pro-
cedure with the clinical indication that the 2 cysts were
identified in a different region of the pancreas (head/unci-
nate/neck versus body/tail). Overall, genomic alterations
were detected in 1220 (65%) specimens. Genomic alter-
ations in KRAS, BRAF, NRAS, and HRAS were seen in 917
(49%), 91 (5%), 2 (<1%), and 1 (<1%) cysts, respectively
(Figure 2 and Supplementary Data). In contrast to other
gastrointestinal neoplasms, a minority of BRAF alterations
were V600E/L/M/R mutations (class I mutations), and
instead were predominantly class II and class III BRAF
mutations (n ¼ 83, 91%) (Supplementary Table 4). The
most prevalent BRAF alteration was an in-frame deletion
involving codon 486. Activating GNAS mutations were seen
in 569 (30%) cyst fluid specimens, and co-occurred with
either KRAS, BRAF, or both genes in 441 (of 569, 78%), 57
(10%), and 12 (2%) cases. Among GNAS-mutant cysts, 510
(90%) harbored a genomic alteration in at least 1 gene
involved within the MAPK pathway. In total, mutations in
the MAPK genes and GNAS were detected in 1050 (56%)
cases (Supplementary Table 5). Multiple mutations in KRAS
and GNAS were found in 138 (7%) and 26 (1%) cysts,
respectively. In addition, a concurrent LOH in KRAS and
GNAS was seen in 4 and 1 case, respectively.

Among 1050 MAPK/GNAS-mutant cysts, 158 (15%)
were found to have TP53, SMAD4, and/or mTOR gene al-
terations (Supplementary Table 6). With respect to MAPK/
GNAS AF, low-level point mutations in TP53 and PIK3CA
were seen in 18 (of 158, 11%) and 8 (5%) cases, respec-
tively. In addition to TP53, SMAD4, and the mTOR genes, 11
MAPK/GNAS-mutant cysts had CTNNB1 mutations. Five of
11 MAPK/GNAS/CTNNB1-mutant cysts had low-level
CTNNB1 missense mutations as compared with the AF for
the MAPK/GNAS gene(s). Further, none of the MAPK/GNAS/
CTNNB1-mutant cysts had co-occurring TP53, SMAD4, and/
or mTOR gene alterations (Supplementary Table 7).

In the absence of a MAPK/GNAS mutation (n ¼ 837),
alterations in VHL, MEN1, or both genes were seen in 125
(15%), 19 (2%), and 11 (1%) cysts, respectively. Co-
occurring alterations were identified in 37 of 125 (30%)
VHL-mutant/MEN1 wild-type cysts and included point mu-
tations in TP53 (n ¼ 5), the TERT promoter (n ¼ 5), and
PTEN (n ¼ 1) as well as LOH for PTEN (n ¼ 19), TP53 (n ¼
18), SMAD4 (n ¼ 18), and RNF43 (n ¼ 15). Six of 19 (32%)
MEN1-mutant/VHL wild-type cysts also harbored co-
occurring alterations that included a TP53 missense
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mutation (n ¼ 1) and LOH in SMAD4 (n ¼ 6). Interestingly,
the VHL alterations in all 11 VHL/MEN1-mutant cysts con-
sisted of LOH alterations. Further, 9 of 11 (82%) VHL/
MEN1-mutant cysts had co-occurring LOH in TP53 (n ¼ 6),
SMAD4 (n ¼ 5), RNF43 (n ¼ 5), and/or PTEN (n ¼ 9). In the
absence of VHL and/or MEN1 alterations, LOH in TP53 (n ¼
5), SMAD4 (n ¼ 13), RNF43 (n ¼ 5), and/or PTEN (n ¼ 4)
was identified in 21 cysts. Point mutations in TP53 as the
sole genomic alteration were seen in 7 cases. Finally, IDH1
and IDH2 missense mutations were detected in 1 cyst each
without co-occurring alterations.
672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719
Clinicopathologic Correlation and Follow-up
Information for 1216 Patients

Associated clinicopathologic data were available for
1216 of 1832 (66%) patients (Supplementary Data and
Supplementary Table 3) that includes 1253 EUS-FNA ob-
tained pancreatic cyst fluid specimens with genomic alter-
ations detected in 851 specimens, whereas the remaining
402 specimens were negative for detectable mutations. In
addition, follow-up information ranged between 2 and 35
months (mean, 20 months; median, 21 months). Diagnostic
surgical pathology was available for 251 of 1216 (21%)
patients who underwent surgery within 2 to 34 months
(mean, 9 months; median, 4 months) from initial EUS-FNA
and PancreaSeq testing. This cohort of surgical resected
lesions consisted of 246 cysts arising within the pancreas
(Figure 3) and 5 metastatic carcinomas involving the
pancreas. Alterations in KRAS, BRAF, and/or GNAS were
preoperatively detected in 159 of 167 (95%) IPMNs and
KRASmissense mutations were seen in 9 of 19 (47%) MCNs.
In addition to MAPK/GNAS mutations, alterations in TP53,
SMAD4, and/or the mTOR genes were identified in 77 of 90
(86%) IPMNs with advanced neoplasia, 6 of 6 (100%) MCNs
with advanced neoplasia, and 5 of 77 (6%) IPMNs with low-
grade dysplasia (Figure 4 and Supplementary Figure 1).
CTNNB1 missense mutations were also detected in 2 IPMNs
with high-grade dysplasia and 1 IPMN with low-grade
dysplasia. Both IPMNs with high-grade dysplasia were
negative for alterations in TP53, SMAD4, and the mTOR
genes. Low-level point mutations in TP53, PIK3CA, PTEN,
and CTNNB1 corresponded to either an IPMN with low-
grade dysplasia or an MCN with low-grade dysplasia. LOH
in KRAS or GNAS was also observed in 4 IPMNs with an
associated adenocarcinoma; however, 1 of 4 IPMNs was
preoperatively negative for alterations in TP53, SMAD4,
CTNNB1, and the mTOR genes.

All 13 (100%) SCAs harbored VHL alterations. In addi-
tion to VHL, 4 SCAs harbored point mutations in either TP53
(n ¼ 2) or the TERT promoter (n ¼ 2). Before surgical
resection, all 4 SCAs with a TP53 or TERT promoter muta-
tion demonstrated an interval increase in cyst size
(Supplementary Figure 2). Further, 1 TP53-mutant SCA
exhibited progressive stricturing of the main pancreatic
duct and both acute and chronic pancreatitis. Thirty-four
patients who underwent surgery were found to have a
cystic PanNET. Genomic alterations found in preoperative
cyst fluid specimens from these 34 cystic PanNETs included
FLA 5.6.0 DTD � YGAST65349_proof �
7 with MEN1 mutations and 16, 14, 13, 12, and 11 cases
with LOH for SMAD4, VHL, TP53, PTEN, and RNF43,
respectively. Collectively, the presence of an MEN1 mutation
and/or LOH were seen in 24 of 34 (71%) cases.

To further analyze the clinicopathologic features of
PanNETs harboring LOH for SMAD4, VHL, TP53, PTEN, and/
or RNF43, 53 preoperative biopsies from patients with a
solid PanNET encountered during the study period were
tested using PancreaSeq and correlated with surgical
outcome and associated follow-up (Supplementary Data and
Supplementary Table 8). Based on a total of 87 PanNETs (34
cyst fluid specimens and 53 biopsies), MEN1 alterations
were identified in 21 (42%) cases, whereas LOH of SMAD4,
VHL, TP53, PTEN, and/or RNF43 was seen in 51 (59%) cases
(Figure 5). The presence of LOH for �1 gene correlated with
perineural invasion, lymphovascular invasion, regional
lymph node metastases, and distant organ metastasis (P <
.012). LOH for �1 gene was also associated with loss of
protein expression for ATRX and DAXX, and the presence of
alternative lengthening of telomeres (ALT) by telomere-
specific fluorescence in situ hybridization (P < .001). Of
note, within this solid and cystic PanNET study cohort, 21 of
51 (41%) PanNETs with LOH of �1 gene were 1.0 to 2.0 cm
in greatest dimension.

The remaining 965 patients had clinical follow-up data,
but no diagnostic surgical pathology. Of the 965 patients, 2
pancreatic cysts were sampled from 37 patients, and 495
(51%) patients had a pancreatic cyst with a MAPK/GNAS
alteration. For the 37 patients with 2 pancreatic cyst spec-
imens, both specimens harbored mutations in the MAPK
and/or GNAS genes. Twelve of the 495 (2%) patients also
had mutations in TP53 (n ¼ 6) or PIK3CA (n ¼ 6), but all
except 1 case with a PIK3CA mutation were low-level point
mutations. Co-occurring CTNNB1 missense mutations were
seen in 6 cases, and 4 of 6 cases were low-level alterations.
For the 470 patients with a MAPK/GNAS wild-type cyst,
alterations in VHL, MEN1, or both genes were seen in 79
(17%), 8 (2%), and 8 (2%) cysts, respectively. Six VHL-
mutant/MEN1 wild-type cysts also harbored point muta-
tions in TP53 (n ¼ 3) and the TERT promoter (n ¼ 3).
During follow-up, 4 of these 6 VHL-mutant/MEN1 wild-type
cysts exhibited an increase in cyst size.
Comparison and Combination of PancreaSeq
Testing With Other Diagnostic Modalities

Excluding 5 metastatic carcinomas, preoperative Pan-
creaSeq detection of MAPK/GNAS mutations had 90%
sensitivity and 100% specificity for a mucinous cyst
(Table 1). Increased fluid viscosity and an elevated CEA of
>192ng/mL had lower sensitivities (77% and 73%,
respectively) and lower specificities (92% and 94%,
respectively). In conjunction with MAPK/GNAS mutations,
alterations in TP53, SMAD4, and/or the mTOR genes had
85% sensitivity and 96% specificity for a mucinous cyst
with advanced neoplasia. The sensitivity and specificity for
advanced neoplasia increased to 87% and 99%, respec-
tively, on inclusion of MAPK/GNAS LOHor TP53, SMAD4,
and/or mTOR gene alterations with equivalent allele
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Figure 2. (A) An area-proportional Venn diagram demonstrates the distribution of KRAS, GNAS, BRAF, NRAS, and HRAS
mutations identified through prospective PancreaSeq testing of 1887 pancreatic cysts. In addition to KRAS and GNAS, BRAF
alterations were often identified in EUS-FNA obtained pancreatic cyst fluid specimens and frequently co-occurred with GNAS
mutations. (B) Most BRAF alterations found in pancreatic cysts were non-V600E mutations and were predominantly cate-
gorized as class II and class III BRAFmutations (n ¼ 83, 91%). (C) Based on correlative imaging and pathologic studies, BRAF-
mutant pancreatic cysts (white arrowhead) were commonly found to communicate with the main pancreatic duct, and (D) on
gross pathology, exhibited abundant, thick mucin (white arrowheads). (E and F) Microscopically, BRAF-mutant cysts corre-
sponded to an intraductal papillary mucinous neoplasm with prominent papillary fronds and often lined by both gastric and
intestinal epithelium Q8.
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frequencies to MAPK/GNAS. Further, the inclusion of
CTNNB1 with equivalent allele frequencies to MAPK/GNAS
achieved a sensitivity of 89% and a specificity of 98% for
advanced neoplasia. In comparison, the presence of associated
clinical symptoms, jaundice for pancreatic head cysts, cyst size
of >3.0 cm, main pancreatic duct dilatation, a mural nodule
on EUS, increasing cyst size, and a cytopathologic diagnosis of
at least suspicious for adenocarcinoma were all associated
with lower sensitivities and lower specificities. Moreover,
combining PancreaSeq testing with the aforementioned pa-
rameters improved the overall sensitivity of detecting
advanced neoplasia (Supplementary Table 9). The highest
sensitivity of 93% while maintaining a high specificity of 95%
was attained using both PancreaSeq testing and cytopatho-
logic examination (Supplementary Table 10).

Considering current pancreatic cyst guidelines have
primarily focused on detecting advanced neoplasia in
IPMNs, a subanalysis of combined PancreaSeq testing and
cytopathologic evaluation among the 167 resected IPMNs
revealed a sensitivity and a specificity of 88% and 96%,
respectively (Supplementary Table 11). A comparison of the
absolute criteria for surgical management from the AGA
guidelines and the IAP/Fukuoka guidelines showed lower
sensitivities (72% and 86%) and lower specificities (66%
and 36%) than PancreaSeq and cytopathologic evaluation.
Incorporating PancreaSeq testing as another criterion to the
AGA guidelines did increase the sensitivity of each alone to
96%, but the specificity was 62%. Similarly, combining
PancreaSeq testing to the IAP/Fukuoka guidelines improved
the sensitivity to 98%, but at a specificity of 34%. However,
in the prospective clinical setting, distinguishing between
IPMNs with advanced neoplasia and for that matter
FLA 5.6.0 DTD � YGAST65349_proof �
mucinous cysts with advanced neoplasia from other
neoplastic and non-neoplastic pancreatic cysts can be chal-
lenging. Therefore, we evaluated the AGA guidelines, the IAP/
Fukuoka guidelines, and PancreaSeq testing in their ability to
identify IPMNs and MCNs with advanced neoplasia among the
246 pancreatic cysts with diagnostic pathology. As per the
AGA guidelines, the sensitivity and specificity for advanced
neoplasia within a mucinous cyst was 72% and 75%,
respectively, while the IAP/Fukuoka guidelines yielded a
sensitivity of 84% and a specificity of 52%. The addition of
PancreaSeq testing to the AGA guidelines and the IAP/
Fukuoka guidelines increased the sensitivities of both guide-
lines to 96% and 98%, respectively, but the specificities
remained essentially the same at 73% and 51%, respectively.

Although the number of resected serous neoplasms was
limited, the preoperative identification of VHL alterations in
the absence of other genomic alterations had a sensitivity
and specificity of 71% and 100%, respectively. Further, the
inclusion of point mutations in TP53 or the TERT promoter
increased the sensitivity to 100% and the specificity
remained at 100%. In comparison, cytopathology was
consistent with a serous neoplasm for only 1 patient,
whereas the mixed serous-neuroendocrine neoplasm was
misdiagnosed as a PDAC in another patient.

For cystic PanNETs, MEN1 alterations in preoperative
pancreatic cyst fluid were associated with a sensitivity and
specificity of 27% and 100%, respectively. However, the
inclusion of LOH for TP53, SMAD4, PTEN, and/or RNF43
improved the sensitivity to 68%, while the specificity
remained high at 98%. A preoperative cytopathologic
diagnosis of a neuroendocrine tumor had an 85% sensitivity
and 100% specificity, and combination of PancreaSeq
2 November 2022 � 3:27 am � ce
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Figure 3. A summary of clinical presentation, imaging findings, pathologic features, preoperative PancreaSeq testing, and
postoperative PancreaSeq/Oncomine results for 251 patients with pancreatic cyst with diagnostic surgical pathology. Pre-
operative genomic alterations involving KRAS, GNAS, and/or BRAF corresponded to the presence of a mucinous cyst,
whereas additional alterations in TP53, SMAD4, CTNNB1, and/or the mTOR genes were preferentially found in mucinous cysts
with advanced neoplasia. Other key findings were the preoperative detection of LOH for multiple genes that correlated with the
presence of a cystic PanNET, and the identification of TP53 and TERT promoter mutations in large SCAs. Postoperative
PancreaSeq/Oncomine testing revealed the presence of novel BRAF fusion genes and ERBB2 amplification in RAS wild-type
IPMNs (Supplementary Figure 3). Moreover, CDKN2A alterations were preferentially found in IPMNs with advanced neoplasia.
MAPK genes include KRAS, BRAF, HRAS, ERBB2, and MAPK1, and mTOR genes include PTEN, PIK3CA, and AKT1.
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testing and cytopathology yielded a sensitivity of 97% and a
specificity of 98%. Further, the association with metastatic
progression increased with the number of genes exhibiting
LOH. An LOH of �3 genes had a sensitivity and specificity of
83% and 76%, respectively, for distant metastasis (Table 2).
Comparatively, preoperative tumor size of >2.0 cm and pre-
operative histologic grade of at least G2 had sensitivities of
92% and 75%, respectively, and specificities of 50% and 74%,
respectively, for distant metastasis. Interestingly, among 31
patients with cystic PanNET, 19 patients had tumors of 1.0 to
2.0 cm and only 1 of the 19 patients developed metastatic
progression. This WHO grade 1, cystic PanNET harbored LOH
FLA 5.6.0 DTD � YGAST65349_proof �
for VHL, TP53, SMAD4, PTEN, and RNF43. Overall, the key
genomic alterations detected by PancreaSeq and clinical sig-
nificance are summarized in Supplementary Figure 3.
Comparative PancreaSeq/Oncomine Testing of
Paired Pancreatic Cyst Fluid and Diagnostic
Surgical Pathology Specimens

Repeat PancreaSeq and expanded targeted DNA/RNA-
based (Oncomine) NGS testing were performed for 192 of
251 (77%) diagnostic surgical pathology specimens
(Supplementary Table 12). Discordances between
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Figure 4. Representative examples of diagnostic surgical pathology for IPMNs that had Q9preoperative PancreaSeq testing. (A) A
branch-duct IPMN that was resected because of the presence of a mural nodule (white arrowhead) detected on preoperative
imaging. (B) The mural nodule corresponded to collapsed papillary fronds and (C) microscopically, correlated with low-grade
dysplasia. Preoperative PancreaSeq testing detected the presence of KRAS and GNAS mutations, but an absence of TP53,
SMAD4, CTNNB1, with mTOR gene alterations. (D) A branch-duct IPMN (white arrowhead) with focal ductal dilation and
otherwise no concerning preoperative clinical, imaging, or preoperative pathologic findings. Preoperative PancreaSeq testing
identified mutations in KRAS and GNAS, and LOH for PTEN and TP53. (E and F) Diagnostic surgical pathology revealed the
presence of high-grade dysplasia. (G) A branch-duct IPMN (white arrowhead) with focal ductal dilatation and otherwise no
concerning preoperative clinical, imaging, or preoperative pathologic findings. PancreaSeq testing detected a KRAS mutation
and a low-level TP53 mutation. Although the submitting surgical pathology report documented the presence of an IPMN with
low-grade dysplasia, a (H) focal area of cytologic atypia was identified and (I) corresponded to aberrant nuclear p53
expression. (J) A 3.0-cm branch-duct IPMN (white arrowhead) with otherwise no concerning preoperative clinical, imaging, or
preoperative pathologic findings; however, PancreaSeq testing identified a KRAS mutation and SMAD4 LOH. (K) Although
histologically consistent with an IPMN with low-grade dysplasia, (L) diffuse loss of Smad4 expression was seen throughout the
IPMN. The mTOR genes include PIK3CA and PTEN.
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preoperative and postoperative testing were identified in 25
cases and exclusively seen in IPMNs (Figure 3). Of interest, 9
discrepant cases were due to the lack of detectable MAPK/
GNAS mutations in preoperative pancreatic cyst fluid spec-
imens. For the remaining 16 cases, discrepancies were seen
in RNF43 (n ¼ 8), TP53 (n ¼ 7), SMAD4 (n ¼ 2), CTNNB1
(n ¼ 1), and the mTOR genes (n ¼ 3), but did not affect the
overall sensitivity and specificity of PancreaSeq testing. In
addition, Oncomine testing found 4 MAPK-negative IPMNs
FLA 5.6.0 DTD � YGAST65349_proof �
harboring BRAF fusions (n ¼ 3) and ERBB2 amplification
(n ¼ 1) (Supplementary Figure 4). To further characterize
BRAF-mutant IPMNs, whole transcriptome sequencing
revealed a similar gene expression profile as KRAS-mutant
IPMNs (Supplementary Data and Supplementary Figure 5).
Additional genomic alterations found among IPMNs
included those involving CDKN2A (18 of 131 IPMNs, 14%)
and ARID1A (n ¼ 6, 4%). CDKN2A alterations were only
detected in IPMNs with advanced neoplasia (18 of 75 cases).
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Figure 5. (A) A summary of imaging findings, preoperative PancreaSeq testing, and postoperative clinicopathologic features of
87 PanNET patients. Both solid and cystic PanNETs exhibited similar genomic alterations; however, LOH for multiple genes
correlated with several adverse clinicopathologic features, such as lymphovascular invasion, perineural invasion, higher T- and
N-stage, distant metastases, loss of ATRX/DAXX expression, and the presence of ALT. (B) A representative example of a 1.5-
cm PanNET (white arrowhead) in the pancreatic body that preoperative PancreaSeq testing revealed LOH for 4 genes. (C)
Microscopically and immunohistochemically, the PanNET was classified as WHO grade 1. (D) However, within a single regional
lymph node, a metastasis was identified. In addition, the PanNET exhibited loss of ATRX expression and the presence of ALT Q10.
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Two IPMNs with advanced neoplasia that harbored CDKN2A
alterations also lacked alterations in TP53, SMAD4, CTNNB1,
and the mTOR genes.
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Discussion
Despite retrospective studies and single institutional

experiences, questions remain as to whether DNA-based
targeted NGS can improve pancreatic cyst classification
and the detection of advanced neoplasia arising in a
mucinous cyst.10–13,19 Based on a multi-institutional, pro-
spectively collected cohort of patients with pancreatic cyst
FLA 5.6.0 DTD � YGAST65349_proof �
who were evaluated using a centralized molecular labora-
tory, mutations in the MAPK genes and/or GNAS achieved a
sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) for mucinous cysts of 90%,
100%, 100%, and 77%, respectively. Both fluid viscosity
and elevated CEA levels demonstrated lower sensitivities
and lower specificities. Combining PancreaSeq testing with
CEA analysis increased the sensitivity to 99%, but at a loss
in specificity of 73%. Similarly, MAPK/GNAS LOHor TP53,
SMAD4, and/or mTOR gene alterations with equivalent
allele frequencies to MAPK/GNAS mutations attained 87%
sensitivity, 99% specificity, 98% PPV, and 92% NPV for
2 November 2022 � 3:27 am � ce
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Table 1.Diagnostic Performance of PancreaSeq Testing and Other Diagnostic Modalities Based on 246 Diagnostically
Confirmed Pancreatic Cysts

Parameter
Sensitivity, %

(95% CI)
Specificity, %

(95% CI)
PPV, %
(95% CI)

NPV, %
(95% CI)

IPMN
MAPK/GNAS mutations 95 (0.91–0.98) 89 (0.78–0.94) 95 (0.90–0.97) 90 (0.42–0.66)
Presence of multiple cysts (n ¼ 245)a 54 (0.46–0.62) 80 (0.69–0.88) 85 (0.76–0.91) 45 (0.37–0.54)
Increased fluid viscosity (n ¼ 238)a 79 (0.72–0.85) 81 (0.70–0.89) 89 (0.83–0.94) 66 (0.55–0.75)
Elevated CEA (n ¼ 173)a 74 (0.65–0.81) 73 (0.59–0.84) 86 (0.78–0.92) 54 (0.42–0.66)

IPMN with advanced neoplasia
TP53, SMAD4, and/or mTOR gene alterations 87 (0.78–0.93) 76 (0.69–0.83) 68 (0.58–0.76) 91 (0.84–0.95)
TP53, SMAD4, CTNNB1, and/or mTOR gene

alterations
89 (0.80–0.94) 74 (0.67–0.81) 67 (0.57–0.75) 92 (0.86–0.96)

MAPK/GNAS mutations with TP53, SMAD4,
and/or mTOR gene alterations

84 (0.75–0.91) 92 (0.87–0.96) 86 (0.77–0.93) 91 (0.85–0.95)

MAPK/GNAS mutations with TP53, SMAD4,
CTNNB1, and/or mTOR gene alterations

87 (0.78–0.93) 91 (0.85–0.95) 85 (0.75–0.91) 92 (0.87–0.96)

MAPK/GNAS LOH or TP53, SMAD4 and/or
mTOR gene AFs ¼ MAPK/GNAS AFs

86 (0.76–0.92) 95 (0.90–0.98) 91 (0.82–0.96) 92 (0.86–0.96)

MAPK/GNAS LOH or TP53, SMAD4, CTNNB1,
and/or mTOR gene AFs ¼ MAPK/GNAS AFs

88 (0.79–0.94) 94 (0.89–0.97) 90 (0.81–0.95) 93 (0.88–0.96)

Associated clinical symptoms (n ¼ 244)a 38 (0.28–0.49) 71 (0.64–0.78) 44 (0.33–0.55) 66 (0.59–0.73)
Jaundice (n ¼ 131)b 31 (0.20–0.44) 89 (0.78–0.95) 70 (0.50 – 0.86) 60 (0.50–0.69)
Index cyst size >3.0 cm (n ¼ 242)a 56 (0.45–0.66) 55 (0.46–0.63) 41 (0.32–0.51) 68 (0.59–0.76)
Main pancreatic duct dilatation (n ¼ 244)a 71 (0.60–0.80) 65 (0.57–0.73) 54 (0.44–0.63) 80 (0.71–0.86)
Presence of a mural nodule (n ¼ 245)a 44 (0.34–0.55) 80 (0.72–0.85) 55 (0.43–0.67) 71 (0.64–0.78)
Increasing index cyst size (n ¼ 125)a 50 (0.34–0.66) 54 (0.43–0.65) 36 (0.24–0.49) 68 (0.55–0.79)
Malignant cytopathologyc 46 (0.35–0.56) 95 (0.90–0.98) 84 (0.70–0.92) 75 (0.68–0.81)

IPMN and MCN
MAPK/GNAS mutations 90 (0.85–0.94) 100 (0.93–1.00) 100 (0.97–1.00) 77 (0.66–0.85)
Increased fluid viscosity (n ¼ 238)a 77 (0.70–0.83) 92 (0.81–0.97) 97 (0.92–0.99) 57 (0.47–0.67)
Elevated CEA (n ¼ 173)a 73 (0.64–0.80) 94 (0.79–0.99) 98 (0.93–1.00) 46 (0.34–0.58)

IPMN and MCN with advanced neoplasia
TP53, SMAD4, and/or mTOR gene alterations 88 (0.79–0.93) 79 (0.72–0.85) 73 (0.74–0.81) 91 (0.84–0.95)
TP53, SMAD4, CTNNB1, and/or mTOR gene

alterations
90 (0.81–0.95) 77 (0.70–0.84) 72 (0.63–0.79) 92 (0.86–0.96)

MAPK/GNAS mutations with TP53, SMAD4,
and/or mTOR gene alterations

85 (0.76–0.92) 96 (0.91–0.98) 93 (0.85–0.97) 91 (0.85–0.95)

MAPK/GNAS mutations with TP53, SMAD4,
CTNNB1, and/or mTOR gene alterations

88 (0.79–0.93) 95 (0.89–0.98) 91 (0.83–0.96) 92 (0.87–0.96)

MAPK/GNAS LOH or TP53, SMAD4, and/or
mTOR gene AFs ¼ MAPK/GNAS AFs

87 (0.78–0.92) 99 (0.95–1.00) 98 (0.91–1.00) 92 (0.86–0.96)

MAPK/GNAS LOH or TP53, SMAD4, CTNNB1,
and/or mTOR gene AFs ¼ MAPK/GNAS AFs

89 (0.80–0.94) 98 (0.94–1.00) 97 (0.90–0.99) 93 (0.88–0.96)

Associated clinical symptoms (n ¼ 244)a 38 (0.28–0.48) 72 (0.64–0.79) 46 (0.35–0.58) 64 (0.56–0.71)
Jaundice (n ¼ 131)b 31 (0.20–0.44) 89 (0.78–0.95) 70 (0.50–0.86) 60 (0.50–0.69)
Index cyst size >3.0 cm (n ¼ 242)a 59 (0.48–0.68) 57 (0.48–0.65) 46 (0.37–0.56) 68 (0.59–0.76)
Main pancreatic duct dilatation (n ¼ 244)a 68 (0.58–0.77) 65 (0.57 – 0.73) 56 (0.46–0.65) 76 (0.68–0.83)
Presence of a mural nodule (n ¼ 245)a 45 (0.35–0.56) 81 (0.74–0.87) 61 (0.48–0.72) 70 (0.63–0.77)
Increasing index cyst size (n ¼ 125)a 52 (0.37–0.67) 56 (0.44–0.67) 39 (0.27–0.53) 68 (0.55–0.79)
Malignant cytopathologyc 46 (0.36–0.56) 97 (0.92–0.99) 90 (0.77–0.96) 74 (0.67–0.80)

dMAPK genes include KRAS, BRAF, and NRAS; while mTOR genes include PIK3CA, PTEN, and AKT1 Q12.
an designates the number of patients with data available for analysis.
bJaundice was evaluated for patients with a cyst in the pancreatic head, uncinate and/or neck.
cMalignant cytopathology was defined as at least suspicious for adenocarcinoma.

- 2022 Prospective NGS Testing of Pancreatic Cysts 11

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318
advanced neoplasia. The identification of advanced
neoplasia was further improved with the inclusion of
CTNNB1mutations and yielded a sensitivity, specificity, PPV,
and NPV of 89%, 98%, 97%, and 93%, respectively.
FLA 5.6.0 DTD � YGAST65349_proof �
Moreover, the combination of PancreaSeq testing and
cytopathologic evaluation achieved a 93% sensitivity, a 95%
specificity, a 92% PPV, and a 95% NPV for advanced
neoplasia.
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More importantly, the incorporation of PancreaSeq
testing to current IPMN-specific guidelines, such as those by
the AGA guidelines and the IAP/Fukuoka guidelines,
increased the sensitivities of detecting advanced neoplasia
from 72% to 96% and 86% to 98%, respectively, whereas
the specificities of both guidelines remained essentially the
same. Considering the challenges of classifying pancreatic
cysts within the preoperative setting, a separate analysis of
mucinous cysts (IPMNs and MCNs) with advanced neoplasia
also revealed an improvement in the sensitivities of the AGA
guidelines (72% to 96%) and the IAP/Fukuoka guidelines
(84% to 98%) when applying PancreaSeq testing data,
while the specificities of both guidelines once again
remained essentially the same. The advantage of PancreaSeq
testing is its high specificity for advanced neoplasia. In
contrast, the AGA guidelines and the IAP/Fukuoka Guide-
lines exhibit low-to-moderate specificity, but moderate-to-
high sensitivity. The low-to-moderate specificity of both
guidelines is not surprising, as they rely on subjective and
indirect features of advanced neoplasia, such as large (>3.0
cm) pancreatic cyst size, main pancreatic duct dilatation,
and the presence of a mural nodule on EUS. As reported in
the AGA technical review, cyst size of >3.0 cm has a pooled
sensitivity of 74% for malignancy, but a poor pooled spec-
ificity of 49%.8 Main pancreatic duct dilatation and the
presence of a mural nodule have pooled specificities of 80%
and 91%, respectively, but poor pooled sensitivities of 32%
and 48%, respectively.16 The sensitivity and specificity of a
Table 2.Diagnostic Performance of PancreaSeq Testing and Oth

Parameter
Sensitivi

(95%

Serous cystadenoma/neoplasma

VHL alteration in the absence of other alterations 71 (0.42
VHL alteration w/ or w/o point mutations in TP53 and

TERT promoter
100 (0.73

PanNETb

MEN1 alteration in the absence of other alterations 27 (0.14
LOHc in the absence of other alterations 59 (0.41
MEN1 alteration w/ or w/o LOHc in the absence of

other alterations
68 (0.49

Cytopathology positive for neuroendocrine tumor 85 (0.68
MEN1 alteration w/ or w/o LOHc and cytopathology 97 (0.83

Metastatic PanNETd

LOH of at least 1 genee 92 (0.60
LOH of at least 2 genese 92 (0.60
LOH of at least 3 genese 83 (0.51
LOH of at least 4 genese 58 (0.29
LOH of at least 5 genese 33 (0.11
Preoperative tumor size >2.0 cm 92 (0.60
Preoperative cytopathology WHO grades 2 and 3 75 (0.43

aBased on 246 diagnostically confirmed pancreatic cysts th
cystadenoma-neuroendocrine neoplasm.
bBased on 246 diagnostically confirmed pancreatic cysts that i
cLOH of TP53, SMAD4, PTEN, and/or RNF43.
dBased on 87 preoperative specimens (34 cystic PanNETs and
eLOH of VHL, TP53, SMAD4, PTEN, and/or RNF43.

FLA 5.6.0 DTD � YGAST65349_proof �
mural nodule can be highly variable and largely attributable
to the challenges in differentiating a mural nodule from
adherent mucus within the pancreatic cyst by EUS.26 The
issues with EUS are compounded when factoring interob-
server variability and operator dependence.27 However, the
utility of EUS is enhanced when coupled with FNA and
cytopathologic evaluation of pancreatic cyst fluid. Cytopa-
thologic evaluation for advanced neoplasia closely ap-
proaches 100% specificity, but it is often hampered by the
low cellular content of pancreatic cyst fluid.28 Nevertheless,
in the absence of overt malignancy, differentiating high-
grade from low-grade dysplasia can be problematic. In
addition, distinguishing neoplastic cells from gastrointes-
tinal tract contamination is often problematic, but impera-
tive to establishing a diagnosis. Thus, the reported
sensitivity of cytopathology for malignancy can vary widely
from 25% to 88%.8,10,11,19,29,30

Although this study confirms the diagnostic utility of
DNA-based targeted NGS, it also expands the compendium
of MAPK alterations among pancreatic cysts. For instance,
BRAF alterations were found in 5% of all pancreatic cysts
and only 8% of BRAF-mutant cysts had co-occurring KRAS
mutations. Most BRAF alterations were categorized as class
II and class III and included in-frame deletions of codon 486.
Previous studies have found class II and class III BRAF al-
terations, especially in-frame deletions, are often mutually
exclusive of KRAS mutations and activate the MAPK
signaling pathway.31,32 Based on diagnostic surgical
er Diagnostic Modalities for Serous Neoplasms and PanNETs

ty, %
CI)

Specificity, %
(95% CI)

PPV, %
(95% CI)

NPV, %
(95% CI)

–0.90) 100 (0.97–1.00) 100 (0.66–1.00) 98 (0.95–1.00)
–1.00) 100 (0.97–1.00) 100 (0.73–1.00 100 (0.97–1.00)

–0.45) 100 (0.98–1.00) 100 (0.63–1.00) 90 (0.85–0.93)
–0.75) 98 (0.95–0.99) 83 (0.62–0.95) 94 (0.89–0.96)
–0.82) 98 (0.95–0.99) 85 (0.65–0.95) 95 (0.91–0.97)

–0.95) 100 (0.97–1.00) 97 (0.81–1.00) 98 (0.94–0.99)
–1.00) 98 (0.95–0.99) 89 (0.74–0.97) 100 (0.97–1.00)

–1.00) 49 (0.37–0.61) 23 (0.13–0.38) 97 (0.84–1.00)
–1.00) 68 (0.56–0.78) 32 (0.18–0.51) 98 (0.88–1.00)
–0.97) 76 (0.65–0.85) 37 (0.20–0.57) 97 (0.87–0.99)
–0.84) 88 (0.77–0.94) 44 (0.21–0.70) 93 (0.83–0.97)
–0.64) 93 (0.84–0.97) 44 (0.15–0.77) 89 (0.80–0.95)
–1.00) 50 (0.38–0.62) 23 (0.13–0.38) 97 (0.84–1.00)
–0.93) 74 (0.62–0.83) 32 (0.17–0.52) 95 (0.84–0.99)

at includes 13 serous cystadenomas and 1 mixed serous

ncludes 34 cystic PanNETs.

53 solid PanNETs) with patient follow-up.
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pathology, BRAF alterations detected within this study
correlated with the presence of an IPMN. Comparative RNA
sequencing revealed BRAF-mutant IPMNs had similar gene
expression profiles as KRAS-mutant IPMNs. In addition,
through expanded targeted DNA/RNA-based NGS testing of
MAPK-negative IPMNs, the spectrum of BRAF alterations
was expanded to include fusion genes. The relationship
between BRAF alterations and IPMNs is also interesting. For
the entire prospectively collected pancreatic cyst cohort,
77% of BRAF-mutant pancreatic cysts harbored GNAS mu-
tations, which are known to be specific for IPMNs. Although
diagnostic surgical pathology was unavailable, Ren et al33

reported the association between BRAF and GNAS muta-
tions for 6 pancreatic cysts that were clinically consistent
with IPMNs. Hence, BRAF alterations are likely to substitute
for KRAS mutations as a driver of the MAPK pathway in the
pathogenesis of IPMNs.

An unexpected finding from this study was the identifi-
cation of pancreatic cysts harboring VHL alterations and
either TP53 or TERT promoter mutations. Consistent with
prior studies, alterations in VHL alone were specific to se-
rous cystic neoplasms.12,13,18 In addition, the combination of
VHL alterations and mutations in TP53 or the TERT pro-
moter correlated with an SCA. However, based on surveil-
lance imaging, SCAs with these additional alterations
demonstrated interval growth in size. In fact, the growth of
one VHL/TP53-mutant SCA resulted in progressive stric-
turing of the main pancreatic duct, and, consequently, the
patient developed acute and chronic pancreatitis. Although
SCAs are benign and the overwhelming majority are
asymptomatic, and slow growing, a subset can demonstrate
increased growth and associated symptomatology.34 Tseng
et al35 reported that patients with SCAs demonstrating a
high growth rate (1.98 cm/y) and presented with abdominal
pain, fullness and/or jaundice. Similarly, El-Hayek et al36

found symptomatic patients often exhibited rapid growth
of their SCA. In both studies, correlative molecular testing
was not performed and, therefore, it is intriguing to surmise
that clinically significant growth of an SCA and, conse-
quently, symptomatology due to an SCA, may be associated
with the development of a mutation in TP53 or the TERT
promoter.

Finally, MEN1 alterations were highly specific for cystic
PanNETs, but the sensitivity was only 27%. The sensitivity
for cystic PanNETs improved to 68% on inclusion of LOH at
the TP53, SMAD4, PTEN, and/or RNF43 genomic loci. In
comparison, cytopathologic evaluation achieved a sensitivity
and specificity of 85% and 100%, respectively. However, the
combination of cytopathologic evaluation and PancreaSeq
testing yielded a 97% sensitivity and a 98% specificity for a
cystic PanNET. To date, available sequencing data for cystic
PanNETs are limited, but solid PanNETs are reported to
harbor recurrent LOH at multiple genomic loci with a
prevalence greater than MEN1 alterations.37–39 As described
herein, LOH was similarly present in cystic PanNETs and
more frequently seen than alterations in MEN1. Moreover,
within a combined cohort of solid and cystic PanNETs, LOH
for at least 1 gene was associated with several adverse
prognostic features. Both Pea et al38 and Lawrence et al40
FLA 5.6.0 DTD � YGAST65349_proof �
published related findings with LOH of multiple genomic
loci correlating with an increased risk of distant metastasis.
LOH of �3 genes within the PanNET study cohort had a
sensitivity and specificity of 83% and 76%, respectively, for
metastatic spread.

Analogous to mucinous cysts of the pancreas, both solid
and cystic PanNETs are increasing in prevalence and often
incidentally identified by radiographic imaging. While many
patients with PanNET develop rapid and widely metastatic
disease, other patients may present with indolent and slow-
growing disease.41,42 In fact, the overtreatment of PanNETs
has been a subject of debate and an observational approach
may be warranted for a subset of patients.43–46 Despite the
development of PanNET prognostic classification systems,
such as WHO histologic grading, and tumor staging systems,
such as those based on tumor size of >2.0 cm, these pa-
rameters do not necessarily reflect the pathobiology of these
tumors.47,48 LOH of at least 3 genes was associated with a
higher specificity (76%) for distant metastasis than >2.0 cm
tumor size (50%) and advanced WHO grade (grades 2 and
3, 74%). Moreover, LOH was superior in sensitivity (83%)
than advanced WHO grade (75%). Interestingly, LOH was
also associated with loss of expression of ATRX/DAXX and
the presence of ALT. Although the exact mechanism has not
been fully elucidated, ATRX and DAXX play an integral role
in telomere maintenance, and loss of protein expression
coincides with the presence of ALT, a telomerase-
independent telomere maintenance mechanism.49,50 Inter-
estingly, ALT results in broad chromosomal abnormalities,
and, therefore, it is plausible that the LOH found at multiple
genomic loci in PanNETs is the sequelae of ALT and may
reflect a common genomic pathway in the metastatic pro-
gression of PanNETs.

We acknowledge that there are several limitations to this
study. Although a large number of pancreatic cysts were
analyzed, diagnostic surgical pathology was available for
only 14% of patients and represents a surgical selection
bias. However, clinical follow-up was also obtained for an
additional 52% of patients. Our study also suffers from a
testing selection bias, as pancreatic cyst fluid specimens
satisfactory for targeted NGS were used for analysis.
Considering a 2% failure rate of PancreaSeq testing, the
effect of this selection bias is likely to be minimal. None-
theless, molecularly discordant results were identified when
comparing preoperative and postoperative specimens. For
instance, MAPK/GNAS alterations were not detected in 9
surgically resected IPMNs, but present within the corre-
sponding surgical specimen, which underscores a potential
issue of sensitivity for PancreaSeq testing. Alternative ex-
planations for this discordance are the absence of exfoliated
neoplastic cells within the pancreatic cyst fluid, degraded
mutant DNA within the cyst, and adequate sampling of the
pancreatic cyst by the gastroenterologist. In addition, the
follow-up period of this study is relatively short to assess
the clinical impact of detecting specific genomic alterations,
such as TP53, SMAD4, CTNNB1, and the mTOR genes.
Although we plan to continue monitoring patients with
these genomic alterations, the median duration of follow-up
was 23 months or close to 2 years, which by many
2 November 2022 � 3:27 am � ce
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pancreatic cyst guidelines is sufficient as the initial time
interval for imaging surveillance.6,7,9,21 Another limitation is
the relative paucity of certain genomic alterations to
determine their true clinical significance. For example, the
inclusion of CTNNB1 to the assessment of MAPK/GNAS-
mutant pancreatic cysts improved the identification of
advanced neoplasia, but this was based on only 4 diagnos-
tically confirmed IPMNs harboring CTNNB1 alterations.
Moreover, despite PancreaSeq consisting of 22 pancreatic
cyst–related genes, it did not include other potentially
important genes, such as CDKN2A. Several studies have re-
ported recurrent genomic alterations in CDKN2A in a subset
of mucinous cysts and preferentially those with advanced
neoplasia.12 Similarly, we found CDKN2A alterations were
detected in only IPMNs and those IPMNs with advanced
neoplasia at a prevalence of 24%. In addition, 2 IPMNs with
advanced neoplasia that were negative for alterations in
TP53, SMAD4, CTNNB1, and the mTOR genes harbored
CDKN2A alterations. Hence, further studies are required to
determine the clinical significance of CDKN2A alterations
among pancreatic cysts. Moreover, as the identification of
BRAF alterations to include fusion genes highlights, the full
breadth of genomic alterations that characterize pancreatic
cysts has yet to be determined. A complicated issue with
this study is the incorporation of allele frequencies to
improve the performance of PancreaSeq testing. As we re-
ported previously, low-level genomic alterations in TP53
and PIK3CA with respect to MAPK/GNAS mutations can be
seen in the setting of IPMNs with low-grade dysplasia and it
is plausible that these IPMNs are at an increased risk of
progression to advanced neoplasia. Admittingly, the current
study does not address the malignant potential of this pa-
tient population but highlights the increasing complexity of
genomic alterations that characterize pancreatic cystic
neoplasms. To simplify reporting of key alterations to
include allele frequencies, our group is in the process of
developing a pancreatic cyst molecular classifier to aid in
the interpretation of genomic variants and provide surveil-
lance/treatment guidance to both gastroenterologists and
surgeons (Nikiforova and Singhi, unpublished results). Last,
this study does not address the optimal approach of inte-
grating targeted NGS testing to current pancreatic cyst
surveillance protocols. As an example, the European
evidence-based guidelines could not be applied to this study
cohort due to the lack of sufficient data to determine
“relative indications” for surgical management. None of the
guidelines, however, have sufficient accuracy to dictate
appropriate surveillance and management of pancreatic
cysts, are admittingly based on “very low quality of evi-
dence,” and, not surprisingly, the institutions participating
within this study followed different pancreatic cyst guide-
lines and, in many cases, utilized a personalized approach
for their patients.6,7,9,21,51–53 A major step forward in
delineating an optimal pancreatic cyst protocol is the ECOG-
ACRIN pancreatic cyst surveillance clinical trial of >4000
patients that will compare the effectiveness between the
AGA guidelines and the IAP/Fukuoka guidelines.54 As a
secondary aim of this study, biospecimens will be collected
FLA 5.6.0 DTD � YGAST65349_proof �
from enrolled patients to assess the utility of promising
pancreatic cyst biomarkers.

In summary, we report the results of a large, multi-
institutional, prospective, and real-time study that clini-
cally applies targeted NGS testing of EUS-FNA-obtained
preoperative pancreatic cyst fluid to the evaluation of
pancreatic cysts. Overall, our results underscore the clinical
utility of targeted NGS given its high sensitivity and high
specificity in the diagnosis of mucinous cysts and the
identification of advanced neoplasia within a mucinous cyst.
This study also broadens the number of genomic alterations
that characterize not only mucinous cysts, but SCAs and
cystic PanNETs. Although we recognize that additional
studies are required, the data reported herein combined
with previous studies support the integration of targeted
NGS into the establishment of evidence-based pancreatic
cyst guidelines.
Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/
j.gastro.2022.09.028.
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Supplementary Data

Rationale and Design of the PancreaSeq Panel
The PancreaSeq panel used herein was designed in part

based on previously published next-generation sequencing
testing results for the classification of various neoplastic
pancreatic cysts, such as intraductal papillary mucinous
neoplasms (IPMNs) and mucinous cystic neoplasms
(MCNs), and the identification of pancreatic ductal adeno-
carcinomas (PDACs) reported to arise in association with
mucinous cysts. For instance, mutations in KRAS, GNAS, and
RNF43 were included because of their high sensitivity and
high specificity for mucinous cysts of the pancreas.1–11 In
rare instances, alterations in NRAS, HRAS, BRAF, and STK11
have also been reported to be clinically associated with
mucinous cysts.2,5,12,13 KRAS, HRAS, NRAS, and BRAF are
genes collectively known to be involved in the mitogen-
activated protein kinase (MAPK) pathway. Further, the
clinical utility of incorporating TP53, PIK3CA, PTEN, and
AKT1 testing in the setting of KRAS and/or GNAS mutations
for the detection of mucinous cysts with advanced neoplasia
was previously published in a prospective testing cohort
but this cohort comprised only a single institutional study.5

It is also important to note that other than PIK3CA, PTEN,
and AKT1, genomic alterations in the remaining mammalian
target of rapamycin (mTOR) genes have rarely been impli-
cated in the molecular pathogenesis of PDAC arising from a
mucinous cyst.14–18 SMAD4 was included because of its high
prevalence in both mucinous cysts with high-grade
dysplasia and PDACs associated with a mucinous
cyst.1,2,9,10,19 Specific attention to mutant allele frequencies
(AFs) was made considering previously reported results of
low-level variants of TP53, SMAD4, and the mTOR genes
with respect to MAPK/GNAS alterations corresponding to
an absence of advanced neoplasia.5 However, CDKN2A was
specifically excluded due its reported detection in both low-
grade and high-grade mucinous cysts.20

Molecular testing of pancreatic cyst fluid is not only
accurate in the identification of mucinous cysts, but also the
classification of other neoplastic cysts. Genomic alterations
in VHL have been identified in serous cystadenomas
(SCAs).1,2,5,7 Similarly, recurrent mutations in exon 3 of
CTNNB1 is highly specific for solid pseudopapillary neo-
plasms.21,22 Interestingly, CTNNB1 mutations have also
been reported in mucinous cysts.20 Mutations in MEN1 and
the mTOR genes have been detected in pancreatic neuro-
endocrine tumors (PanNETs), but in the absence of KRAS
and GNAS mutations.23–25 Finally, the absence of genomic
alterations in the aforementioned genes is predicted to
represent a non-neoplastic cyst with the consideration that
false negative results may occur due to insufficient sam-
pling of a neoplastic lesion or potentially an undescribed
genomic alteration associated with a subset of pancreatic
cystic neoplasms (eg, intraductal oncocytic papillary
neoplasm).26 Expected results based on previously pub-
lished data are summarized in Supplementary Table 1.

Retrospective PancreaSeq Testing Cohort
The study cohort consisted of 97 endoscopic

ultrasound–fine needle aspiration (EUS-FNA) obtained
pancreatic cyst fluid specimens that were collected as pre-
viously published and had corresponding follow-up diag-
nostic surgical pathology (Supplementary Table 2). The
patients ranged in age from 22 to 83 years (mean, 62.5
years; median, 63.0 years) with a slight male majority of
52%. Based on the patient’s electronic medical record,
associated clinical symptoms were documented for 47
(49%) patients with jaundice identified for 6 of 42 (14%)
patients with a pancreatic cyst involving the head, uncinate,
and/or neck. Per EUS reports, most pancreatic cysts within
this cohort were seen in the body and/or tail (n ¼ 55, 57%).
Further, the pancreatic cysts ranged in size between 1.3 and
9.4 cm (mean, 3.8 cm; median, 3.2 cm) and 53 (55%) pa-
tients had a cyst >3.0 cm. Additional imaging findings
included the presence of multiple cysts (n ¼ 46, 47%),
associated ductal dilation (n ¼ 26, 27%), and a mural
nodule (n ¼ 16, 17%). On FNA, increased fluid viscosity was
noted for 48 (50%) patients and an elevated CEA for 41
(42%) patients. A cytopathologic diagnosis of at least sus-
picious for adenocarcinoma was identified in 7 (7%) cases.

On the basis of diagnostic surgical pathology, the
retrospective cohort was composed of 13 IPMN-associated
adenocarcinoma, 7 IPMNs with high-grade dysplasia, 2
MCNs with high-grade dysplasia, 34 IPMNs with low-grade
dysplasia, 7 MCNs with low-grade dysplasia, 9 cystic Pan-
NETs, 2 SCAs, 16 pseudocysts, 2 lymphoepithelial cysts, 2
retention cysts, 1 acinar cell cystadenoma, 1 epidermoid
cyst within an intrapancreatic spleen, and 1 squamous cyst
of the pancreas. The sensitivity and specificity of MAPK/
GNAS alterations for a mucinous cyst was 89% and 100%,
respectively. In comparison, increased fluid viscosity and an
elevated CEA had lower sensitivities (68% and 56%,
respectively) and lower specificities (85% and 82%,
respectively). In conjunction with MAPK/GNAS mutations,
alterations in TP53, SMAD4, and/or the mTOR genes had
86% sensitivity and 96% specificity for a mucinous cyst
with advanced neoplasia. The sensitivities and specificities
of individual genomic combinations for advanced neoplasia
were as follows: MAPK/GNAS and TP53 alterations were
associated with 64% sensitivity and 99% specificity;
MAPK/GNAS and SMAD4 alterations were associated with
46% sensitivity and 100% specificity; and MAPK/GNAS and
mTOR alterations were associated with 32% sensitivity and
96% specificity. Of note, the combination of MAPK/GNAS
with TP53 and/or SMAD4 yielded a sensitivity of 77% and a
specificity of 99%. However, on exclusion of low-level TP53
and PIK3CA mutations, the sensitivity and specificity of the
MAPK/GNAS and TP53, SMAD4, and/or mTOR gene com-
bination of genomic alterations was 86% and 100%,
respectively. The sensitivities and specificities for advanced
neoplasia were lower for the presence of associated clinical
symptoms (55% and 53%), jaundice for pancreatic head
cysts (20% and 89%), cyst size of >3.0 cm (59% and 47%),
main pancreatic duct dilatation (45% and 79%), a mural
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nodule (27% and 87%), and a cytopathologic diagnosis of at
least suspicious for adenocarcinoma (27% and 99%).

Prospective PancreaSeq Testing Cohort
In total, 1993 EUS-FNA–obtained pancreatic cyst fluid

specimens from 1889 patients were prospectively analyzed
for genomic alterations over a 2-year time frame. Among
these cases, 1887 (98%) specimens from 1832 patients
were satisfactory for PancreaSeq testing (Supplementary
Table 3). The DNA concentration from these specimens
ranged between 0.01 and 283 ng/mL (mean, 6.84 ng/mL;
median, 4.4 ng/mL). This patient cohort was predominantly
female (n ¼ 1048, 56%) and ranged in age from 12 to 80
years (mean, 66.3 years; median, 69.0 years). Associated
clinical and imaging data were available for most patients
with documentation of associated clinical symptoms (n ¼
1227, 67%), jaundice for pancreatic head/uncinate/neck
cysts (n ¼ 635, 34%), pancreatic cyst location (n ¼ 1225,
65%), pancreatic cyst size (n ¼ 1167, 62%), changes in cyst
size (n ¼ 434, 23%), the presence of multiple cysts (n ¼
1167, 62%), main duct dilatation (n ¼ 1166, 62%), and a
mural nodule (n ¼ 1174, 62%). Further, on FNA, increased
fluid viscosity by string sign assessment (n ¼ 1119, 59%),
pancreatic cyst fluid CEA (n ¼ 712, 38%), and cytopatho-
logic evaluation (n ¼ 642, 34%). Genomic alterations in
KRAS, GNAS, BRAF, VHL, TP53, SMAD4, CTNNB1, and the
mTOR genes and their clinicopathologic correlative findings
are summarized in Supplementary Tables 5, 6, and 7.

PancreaSeq Testing of PanNETs
With respect to PancreaSeq testing, a clinicopathologic

analysis of cystic (n ¼ 34, 39%) and solid (n ¼ 53, 61%)
PanNETs was performed for 87 preoperative specimens
(Supplementary Table 8). This study cohort consisted of an
equivalent number of female-to-male patients who ranged
in age between 25 and 85 years (mean, 61.2 years; median,
65.0 years). PanNETs were predominantly located within
the body and/or tail of the pancreas (n ¼ 53, 61%) and
ranged in size from 1.0 to 9.3 cm (mean, 2.7 cm; median, 2.2
cm). Most PanNETs were >2.0 cm in greatest dimension
(n ¼ 49, 56%). Available surgical pathologic data and
follow-up included WHO grade (based on Ki-67 and mitotic
index) (n ¼ 84), lymphovascular invasion (n ¼ 82), peri-
neural invasion (n ¼ 82), clinical/pathologic (c/p) T-stage
(n ¼ 82), N-stage (n ¼ 82), ATRX/DAXX immunohisto-
chemical expression (n ¼ 84), telomere-specific fluores-
cence in situ hybridization data to assess for alternative
lengthening of telomeres (ALT) (n ¼ 84), and distant
metastasis (n ¼ 84).

Comparative Whole Transcriptome (RNA)
Sequencing of BRAF-Mutant and KRAS-Mutant
IPMNs With Low-Grade Dysplasia

Whole transcriptome (RNA) sequencing and differential
gene expression analysis was performed for 18 GNAS-
mutant, diagnostically confirmed IPMNs with low-grade
dysplasia and co-occurring mutations in either BRAF (n ¼
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Supplementary Figure 1. Representative examples of diagnostic surgical pathology for IPMNs with advanced neoplasia that
had preoperative PancreaSeq testing. (A) An IPMN-associated PDAC (white arrowhead) in a patient had PancreaSeq testing 1
year prior. One-year prior, other than a 3.1-cm pancreatic cyst, no concerning preoperative clinical, imaging, or preoperative
pathologic findings were identified. However, PancreaSeq testing revealed KRAS and GNAS mutations along with LOH for
RNF43 and TP53. The patient deferred surgery and on imaging follow-up a solid lesion was identified and corresponded to (B
and C) a moderately differentiated PDAC in association with an IPMN with extensive high-grade dysplasia. (D) A 3.5-cm
pancreatic tail cyst (white arrowhead) with otherwise no concerning preoperative clinical, imaging, or preoperative pathol-
ogy findings. Cytopathologic evaluation of EUS-FNA pancreatic cyst fluid only detected acellular mucin, but PancreaSeq
testing identified a KRASmutation and LOH for RNF43 and TP53. (E and F) Microscopically, a colloid carcinoma was identified
arising in IPMN. (G) A 1.2 cm branch-duct IPMN (white arrowhead) with focal ductal dilation, and otherwise no concerning
preoperative clinical, imaging, or preoperative pathologic findings; however, PancreaSeq testing revealed mutations in KRAS,
GNAS, and CTNNB1 of similar AFs. (H and I) Histopathologic examination revealed an IPMN with extensive high-grade
dysplasia. (J) A branch-duct IPMN no concerning preoperative clinical, imaging, or preoperative pathologic findings. Pan-
creaSeq testing, however, detected KRAS and GNAS mutations and LOH for SMAD4. (K and L) On surgical resection, a small
(<0.1 cm), microscopic PDAC (white arrowheads) composed of single cells was identified in association with an IPMN with
high-grade dysplasia.
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Supplementary Figure 2. SCAs were not only characterized by VHL alterations, but also TP53 and TERT promoter mutations.
(A) A 3.8-cm SCA (white arrowhead) of the pancreatic body that was surgically resected due to secondary obstruction of the
main pancreatic duct (yellow arrowhead). Preoperative PancreaSeq testing revealed VHL and TP53 alterations. (B and C)
Microscopically, the SCA consisted of a multilocular cyst that was lined by glycogen-laden epithelium. (D) An 8.0-cm SCA
(white arrowhead) of the pancreatic head was resected due to main pancreatic ductal obstruction (yellow arrowhead) resulting
in the patient presenting with chronic pancreatitic symptoms. Preoperative PancreaSeq testing detected VHL and TERT
promoter mutations. (E and F) The corresponding diagnostic surgical pathology showed a microcystic growth pattern and
multiple foci of pseudopapillae of glycogen-laden epithelium.
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Supplementary Figure 3. Algorithmic approach to key genomic alterations detected by PancreaSeq testing and their clinical
significance. *Refers to high-risk genes that include genomic alterations in TP53, SMAD4, CTNNB1, and the mTOR genes, and
**refers to LOH of �3 genes.
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Supplementary Figure 4. Several IPMNs were negative for MAPK mutations by PancreaSeq testing. However, expanded
molecular (Oncomine) testing identified alterative MAPK driver mutations for 5 cases. (A) An 8.3-cm pancreatic body/tail IPMN
(white arrowhead) with (B) extensive high-grade dysplasia and (C) focal invasive PDAC. Oncomine testing detected an ERBB2
amplification. In addition to ERBB2, 4 IPMNs were found to harbor BRAF fusion genes. (D) A 4.9-cm pancreatic body/tail IPMN
(white arrowhead) that on preoperative PancreaSeq testing revealed a GNASmutation and LOH for RNF43 and TP53. (E and F)
Microscopically, the IPMN with characterized by papillary and flat architecture, and multiple foci of high-grade dysplasia (black
arrowhead). Postoperative Oncomine testing of the IPMN found an AGK-BRAF fusion gene. (G) A 2.7-cm pancreatic head/
uncinate IPMN (white arrowhead) was surgically resected due to the detection of a mural nodule and subsequent malignant
cytopathology. While preoperative PancreaSeq testing identified GNAS and TP53 mutations of similar AFs, no KRAS or BRAF
mutations were seen. (H and I) The corresponding surgical pathology was consistent with an IPMN-associated PDAC (black
arrowhead). In addition, postoperative Oncomine testing showed the presence of an SND1-BRAF fusion gene. (J) A total of 4
IPMNs were found to harbor BRAF fusion genes and consisted of AGK (exon 2)-BRAF (exon 8) (n ¼ 1), SND1 (exon 9)-BRAF
(exon 9) (n ¼ 2), and TRIM24 (exon 3)-BRAF (exon 10) (n ¼ 1).
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Supplementary Figure 5. Differential gene expression analysis was performed for 18 GNAS-mutant IPMNs with low-grade
dysplasia and co-occurring mutations in either BRAF (n ¼ 9) or KRAS (n ¼ 9). A trend toward increased expression of
TERT and SCARNA1 was identified in BRAF-mutant IPMNs as compared with KRAS-mutant IPMNs. However, these findings
were not statistically significant. Overall, BRAF-mutant and KRAS-mutant IPMNs with low-grade dysplasia and GNAS mu-
tations demonstrated similar gene expression profiles.
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