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been identified as a genetic risk factor for both types of IBD, 
Crohn’s disease (CD) and ulcerative colitis.27 CD is one form 
of IBD characterised by immune- related disorder involving the 
entire alimentary tract especially the small intestine, although its 
aetiology is uncertain. More than half of the patients with CD 
exhibit pathological condition involving the terminal ileum. The 
Xpb1−/− model is also IgA dependent in that loss of IgA results 
in proximal extension of the inflammation into the duodenum.28 
In addition, the SAMP1/Yit mice have been defined as the model 
for spontaneous CD enteritis.27 29 Excess IFN-� production in 
the pathological site was also observed in SAMP1/Yit mice.29 
Similar to Xbp1−/− mice and SAMP1/Yit mice, IgA−/− mice in 
our study showed spontaneous inflammation specifically in the 
small intestine and most notably in the ileum, which was asso-
ciated with increased pro- inflammatory cytokine production, 
including IFN-� and IL-  17, from the infiltrating lamina propria 

CD4+ T cells in the ileum. Thus, the IgA−/− mice appear to be 
a potential model for CD. In fact, several clinical studies have 
reported that selective IgA deficiency in humans is correlated 
with increased risk for IBD, especially CD.30 31 Interestingly, 
coeliac disease can also involve inflammation in the small intes-
tine and previous reports have suggested a correlation between 
selective IgA deficiency and coeliac disease.32 33 However, a 
recent review of several prior studies on selective IgA deficiency 
in humans suggested a weaker association with coeliac disease 
than that of CD.34

A previous report demonstrated that IgA deficiency led to 
an increase in the serum levels of other Ig classes, such as IgM 
and IgG.7 Our findings are consistent with this and also provide 
evidence that is associated with spontaneous ileitis occurred. 
Previous associations between IgA deficiency and human IBD 
have not focused on specific anatomical sites. It is notable that 
the pathological disorder in the small intestine of IgA−/− observed 
in our study closely correlated with the areas of greatest IgA 
expression in the whole GI tract.25 Specifically, there are esti-
mated to be 10- fold to 15- fold more IgA+ plasma cells in the 
small intestinal lamina propria relative to that observed in the 
colonic lamina propria.25 Consistent with previous studies,7 8 we 
did not observe any pathological changes in the alimentary tract, 
including colon, of IgA−/− mice, despite previous predictions.8 
In this study, we analysed the small intestine using recently 
established several techniques including direct microinjection of 
C57BL/6 zygotes, CRISPR/Cas9 genome editing system, metage-
nomic analysis with 16S rRNA sequencing and intravital micros-
copy system with a recently established biosensor involving 
fluorescence resonance energy transfer technology. Importantly, 
we were able to obtain the mouse lines with a pure strain back-
ground directly without need for back- crossing into C57BL/6. It 
should be noted that the IgA- deficient mice in previous reports 
were established using conventional procedures at that time, 
and thus, such mice may have slightly mixed background with 
different strains such as 129/Sv.7 Therefore, this may reflect 
the differences in the pathologic phenotypes between ours and 
previous reports.7 8

Our analyses revealed remarkably increased SFB in the 
terminal ileum of IgA−/− compared with that of WT. A previous 
study with AID- deficient mice also implied an aberrant expan-
sion of SFB,9 even though there was no direct evidence showing 
that this increase of SFB would be caused by specific lack of IgA, 
because AID deficiency may also result in decreased production 
of all Ig classes, except IgM and IgD, in all organs including 
the intestines. However, the increased SFB and skewed micro-
flora composition in the small intestine of IgA−/− in our study 
are consistent with the hypothesis of this previous report, 
and thus, this strongly suggests that IgA secretion in the gut 
suppresses these bacterial populations. On the other hand, spon-
taneous ileitis was not described in the same previous report9 as 
another previous study with conventional IgA- deficient mice,7 
and therefore our current study is the first to show such patho-
logical phenotype caused by IgA specific deficiency. A recent 
study demonstrated an abundance of IgA in the small intestine 
but not in the colon.25 It also showed production of IgA specifi-
cally against SFB in a T cell–dependent manner. Therefore, IgA 
deficiency is suggested to lead to an expansion of SFB specifi-
cally in the small intestine. Furthermore, SFB has been reported 
to induce Th17 cells in the ileal lamina propria.24 Indeed, our 
study also showed an increased IL- 17 production from the ileal 
lamina propria CD4+ T cells of IgA−/− mice. In addition, CD4+ 
T- cell production of another pro- inflammatory cytokine, INF-�, 
which is not induced by SFB efficiently24 was also significantly 

Figure 6 Intravital imaging of Ca2+ signalling in Peyer’s patch (PP) 
B cells. (A) Representative images of Ca2+ signalling in the PP of the 
control (Ctrl, left) and IgA�/�  (right) CD19- Cre/YC3.60�ox mice. Intravital 
imaging analysis of PP was performed under a confocal microscopy. 
Time- lapse images were obtained at every 2 s. Representative images 
re�ecting the Ca2+ concentration based on the YFP:CFP ratio (excitation: 
458 nm) are shown (n=3). (B) Distribution of the time- integrated 
intracellular Ca2+ concentrations of the PP B cells from Ctrl (left) and 
IgA�/�  (right) CD19- Cre/YC3.60�ox mice (n=20, frame=147 for Ctrl; n=20, 
frame=89 for IgA�/� ). Percentages of cells with YFP/CFP ratios >2 are 
indicated. (C) YFP/CFP ratiometric intensities (excitation: 458 nm) of the 
PP B cells from Ctrl (left) and IgA�/�  (right) CD19- Cre/YC3.60�ox mice. 
Randomly selected �elds from three mice were analysed. p<0.05 (t- 
test).
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increased in the IgA−/− mice. Furthermore, IgA−/− mice showed 
slight histological abnormalities in the SFB- free condition by 
vancomycin treatment. Taken together, these findings suggest 
that IgA deficiency leads to increased SFB and other bacteria in 
association with CD4+ T- cell activation, even though how these 
changes culminate in ileal inflammation is still unknown.

We also observed more Gram- negative bacterial taxa (22 taxa) 
in IgA−/− compared with that of WT (8 taxa). Presumably, IgA 
deficiency may have provided a symbiotic milieu for Gram- 
negative bacteria, and this is consistent with a previous report.8 
Notably among these microbes, Sutterella species, which are 
increased in IgA−/− mice, were also previously found to correlate 
with human autism.35 And interestingly, IgA has also been 
suggested to correlate with human autism.36 37 Furthermore, 
another microbial species, Proteobacteria S24- 7, a commensal 
bacteria that is coated with IgA in a T cell–dependent and T cell–
independent manner was increased in IgA−/− mice.25 It seems 
that IgA deficiency may therefore cause an expansion of these 
bacteria in the gut.

In this study, we show that the cytoplasmic tail of IgA is 
dispensable for IgA Ab production. The cytoplasmic tail of IgA 
(14 aa) is shorter than those of IgG and IgE (28 aa) but longer 
than those of IgM and IgD (3 aa).14 Although the cytoplasmic 
tails of IgG and IgE are known to be crucial for Ab produc-
tion,12 13 IgA production is not dependent on the presence of the 
tail, as shown in our current study with IgAtm/tm mice, suggesting 
that this element may differ substantially in function (as well as 
in length and sequence) from those of IgG and IgE. Therefore, 
our study here identifies this as an important distinguishing char-
acteristic of IgA relative to IgG and IgE.

We also observed B cells with constitutively increased intracel-
lular Ca2+ levels in the PP of IgA−/− mice, and this is reminiscent 
of our findings in the B cells associated with autoimmune- prone 
lpr/lpr mice and oxazolone- induced colitis model15 17 We previ-
ously demonstrated a significant increase in B cells exhibiting 
constitutively elevated intracellular Ca2+ concentrations in lpr/
lpr mice despite an absence of any clinical findings. In IgA−/− 
mice, abnormally augmented Ca2+ signalling was observed in B 
cells from the PP, which coincides with ileal inflammation. The 
appearance of constitutively activated B cells is consistent with 
the inflammation observed.

In summary, our study highlights the role of IgA in the gut. 
Our findings indicate that IgA deficiency elicits the expansion of 
some commensal bacterial strains and promotes inflammation in 
the small intestine. This suggests that IgA is an important regu-
lator of commensal bacteria, especially in the small intestine. 
Further analysis of commensal bacterial expansion is needed to 
precisely define the role of IgA in gut homeostasis.
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