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ABSTRACT
Objective  Reducing FODMAPs (fermentable 
oligosaccharides, disaccharides, monosaccharides 
and polyols) can be clinically beneficial in IBS but the 
mechanism is incompletely understood. We aimed to 
detect microbial signatures that might predict response 
to the low FODMAP diet and assess whether microbiota 
compositional and functional shifts could provide insights 
into its mode of action.
Design  We used metagenomics to determine high-
resolution taxonomic and functional profiles of the 
stool microbiota from IBS cases and household controls 
(n=56 pairs) on their usual diet. Clinical response and 
microbiota changes were studied in 41 pairs after 4 
weeks on a low FODMAP diet.
Results  Unsupervised analysis of baseline IBS cases 
pre-diet identified two distinct microbiota profiles, 
which we refer to as IBSP (pathogenic-like) and IBSH 
(health-like) subtypes. IBSP microbiomes were enriched 
in Firmicutes and genes for amino acid and carbohydrate 
metabolism, but depleted in Bacteroidetes species. 
IBSH microbiomes were similar to controls. On the 
low FODMAP diet, IBSH and control microbiota were 
unaffected, but the IBSP signature shifted towards 
a health-associated microbiome with an increase in 
Bacteroidetes (p=0.009), a decrease in Firmicutes 
species (p=0.004) and normalisation of primary 
metabolic genes. The clinical response to the low 
FODMAP diet was greater in IBSP subjects compared 
with IBSH (p=0.02).
Conclusion  50% of IBS cases manifested a 
’pathogenic’ gut microbial signature. This shifted towards 
the healthy profile on the low FODMAP diet; and IBSP 
cases showed an enhanced clinical responsiveness to the 
dietary therapy. The effectiveness of FODMAP reduction 
in IBSP may result from the alterations in gut microbiota 
and metabolites produced. Microbiota signatures could 
be useful as biomarkers to guide IBS treatment; and 
investigating IBSP species and metabolic pathways might 
yield insights regarding IBS pathogenic mechanisms.

INTRODUCTION
IBS affects 10%–15% of the population world-
wide.1 It impacts quality of life2 and incurs signif-
icant health economic cost.3 The pathophysiology 

of IBS includes changes in visceral nerve sensi-
tivity,4 intestinal permeability5 and psychological 
factors.6 Several lines of evidence suggest the gut 
microbiome as a key aetiological factor in IBS. 
For example, there is a sixfold increased risk of 
developing IBS following an episode of infective 
gastroenteritis,7 probiotics and dietary intervention 
can reduce the symptoms8 9 and faecal transplanta-
tion has reported efficacy in treating IBS.10 Recent 
studies using 16S ribosomal RNA profiles have 
suggested an altered gut microbiota in IBS subjects 
compared with controls. Although the findings of 
earlier studies vary significantly, recent studies more 
consistently indicate a reduction in Bacteroidetes in 

Significance of this study

What is already known on this subject?
►► Patients with IBS often respond to a low 
FODMAP (fermentable oligosaccharides, 
disaccharides, monosaccharides and polyols) 
diet.

►► The gut microbiota has been implicated in IBS.
►► The microbiota in patients with IBS may change 
with diet.

What are the new findings?
►► We were able to stratify patients with IBS 
according to their gut microbiota species and 
metabolic gene signatures.

►► We identified a distinct gut microbiota subtype 
with an enhanced clinical response to a low 
FODMAP diet compared with other subjects 
with IBS.

How might it impact on clinical practice in the 
foreseeable future?

►► The potential development of a microbiota 
signature as a biomarker to manage IBS cases 
with a low FODMAP diet recommendation.

►► If the bacteria represented in the IBSP subtype 
are shown to play a pathogenic role in IBS, 
perhaps through their metabolic activity, this 
provides a target for new therapies and an 
intermediate phenotype by which to assess 
them.
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IBS cases versus controls.11–13 However, the way in which the 
gut microbiota and IBS symptoms are linked mechanistically 
remains poorly understood.

IBS symptoms can be treated with low-fibre diets to reduce 
the colonic microbial fermentation that produces hydrogen and 
methane, leading to bloating.9 More recently, diets avoiding 
fermentable oligosaccharides, disaccharides, monosaccharides 
and polyols (FODMAPs) have demonstrated efficacy.14–17 The 
mechanisms are debated,18 but potentially involve modulation of 
microbiota composition and metabolite production.19 The low 
FODMAP diet is challenging for many patients to follow, often 
requiring increased time preparing meals, recipe adaptation 
and fewer options for convenience foods. Its long-term conse-
quences on health are unknown. Thus, there is a recognised 
need to better understand how low FODMAP diets work,20 and 
ideally identify biomarkers that predict response.

In order to accurately link changes in gut microbiota struc-
ture with diet, including low FODMAP diets, detailed taxo-
nomic profiling and quantification of microbial abundance 
is required. The gut microbiota of healthy adults is diverse, 
dominated by hundreds of bacterial species from the Bacteroi-
detes and Firmicutes phyla, with fewer species from Actino-
bacteria and Proteobacteria.21 It is shaped by diet and impacts 
immunity, metabolism and cognition.22 23 While 16S rRNA 
studies have provided valuable insights into the gut microbiota 
and IBS, they cannot achieve taxonomic resolution to species 
level. Techniques of microbial culture and metagenomic 
sequencing now enable detailed taxonomic and functional 
characterisation.24

The aim of the present study was to identify a biomarker 
of response to the low FODMAP diet and gain insights into 
microbial changes underlying treatment success using high-
resolution metagenomic and functional analysis of subjects 
with IBS and household controls before and while on a low 
FODMAP diet.

MATERIALS AND METHODS
Subjects
A prospective single centre case–control study recruited partic-
ipants from 2016 to 2019. We included adults (18–68 years of 
age) meeting the Rome IV criteria25 for diarrhoea-predominant 
or mixed type IBS (IBS-D and IBS-M, respectively) with respec-
tive household controls. Subjects were recruited from outpatient 
clinics at Cambridge University Hospital in the UK and via a 
social media campaign.

We excluded cases with other GI diseases, pregnancy, those 
already following a restrictive diet (including those already on 
a low intake of FODMAPs), and those taking probiotics or who 
had taken medications within 1 month that could potentially 
modify the gut microbiota such as antibiotics, proton pump 
inhibitors, colonoscopy bowel preparation or metformin.26

Study procedures are summarised in figure  1. Participants 
were assessed for suitability by a consultant and a dietitian. 
Three subsequent study visits were supervised by one of two 
senior gastroenterology dietitians trained and experienced in 
the administration of the low FODMAP diet. Seven-day food 
diaries (documenting the preceding week’s dietary intake) were 
collected from all participants and symptom severity scores 
captured using the IBS Severity Scoring System (IBS-SSS).27 Diet 
FODMAP scores were assessed using a previously published 
qualitative method28 as described in the supplemental materials 
(the FODMAP scores section).

Stool samples
Participants and their household controls were asked to provide 
a stool sample at visit 1 while on their usual diet, after 4 weeks 
on a low FODMAP diet (at visit 2) and 12 weeks following 
FODMAP rechallenge in subjects with IBS improving on the diet 
(to identify individual FODMAP triggers), or a return to usual 
diet in subjects with IBS not improving with the diet and in all 
household controls (visit 3). Samples were sealed and immedi-
ately placed in the participant’s home freezer and then courier 
transferred on dry ice to the Wellcome Sanger Institute within 
48 hours for storage at −80°C prior to processing. DNA was 
extracted using the MP Biomedicals FastDNA SPIN Kit for Soil.

Metagenomic sequencing
To profile the taxonomic composition of the stool samples 
from cases and controls, we performed shotgun metage-
nomic sequencing using the Illumina Hi-Seq 4000 platform 
(read length 150 bp, 450 bp fragment size, average 12 million 
paired-end reads); total bacterial load was not assessed. Raw 
sequencing data were deposited under ENA Study Accession 
Number: ERP021923. Paired-end read files were classified using 
a Kraken2 bespoke database made of 2754 high-quality human 
GI genomes (online supplemental table 1) from 784 species 
associated with the human gut microbiome downloaded from 
Human Gastrointestinal Bacteria Culture Collection,24 Cultur-
able Genome Reference29 and National Center for Biotech-
nology Information (NCBI). The quality of reference genomes 
was assessed using CheckM,30 and we kept assemblies with  
>90% completeness and   <5% contamination. Bracken31 was 
applied to obtain refined species-level metagenomic profiles. 
An average of 10.2 million sequencing reads were classified at 
species rank by our platform, corresponding to a read classifica-
tion rate of 86% (online supplemental figure 1). No difference 
in assigned read counts was observed between cases and controls 
(paired Wilcoxon p=0.7). Statistical analysis was performed 
using R language.32 Taxonomic profiles were normalised using 
centre log ratio (CLR) transform33 after estimating zero values 
using the cmultRepl function from zCompositions R package.34

For an unsupervised analysis to identify subpopulations 
of IBS cases, we applied a k-means clustering algorithm to 

Figure 1  Flowchart for IBS microbiome study: number of pairs of IBS 
subjects and each of their household controls providing stool samples 
at visits 1–3. FODMAPs, fermentable oligosaccharides, disaccharides, 
monosaccharides and polyols; *IBS-SSS, IBS Severity Scoring System.
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CLR-transformed taxonomic profiles from baseline IBS case 
samples only. The optimal k value was obtained by maximising 
the average silhouette score using the fviz_nbclust function from 
the factoextra R package35 which evaluates the clustering quality 
for values between k=1–10. Additional clustering analyses were 
performed using only the household control samples and also 
with the combined samples for cases and controls.

A comparison of alpha diversity between groups was 
performed using a paired Wilcoxon signed-rank test. We used 
Aitchison distance33 which is the Euclidean distance of the CLR 
transformed profiles to estimate beta diversity between samples. 
The significance of beta diversity difference was estimated using 
Wilcoxon rank-sum test applied to pairwise Aitchison distances.

Associations between cluster assignment and clinical metadata 
were sought using Fisher’s exact test on the contingency table or 
Wilcoxon rank-sum test when appropriate (table 1). We tested 
for correlation between taxonomic/functional abundance and 
IBS cluster by applying generalised linear mixed models using 
MaAsLin2 software.36 To account for the non-independent 
samples, random effects were modelled by matching subject 
with IBS and household control, as well as longitudinal samples 
coming from the same individual. Raw data and source code for 
the analysis are available at http://​github.​com/​kevinVervier/​IBS.

Maximum-likelihood trees were generated using FastTree 
V.2.1.1037 with default parameters, and protein alignments were 
produced by GTDB-Tk V.1.3.038 with the classify_wf function 
and default parameters. Trees were visualised and annotated 
with Interactive Tree Of Life (iTOL) V.5.39

Functional metagenomic and genomic analysis
Functional profiling on each metagenome was conducted using 
HUMAnN340 with default parameters to quantify MetaCyc path-
ways.41 Pathway enrichment was performed using MaAsLin236 
(threshold at q value  <0.1). Enriched pathways were classified 
in broad categories using the MetaCyc database.

To identify the genes present in an enriched MetaCyc pathway 
in a reference genome, we first collected the protein sequence 
corresponding to each gene in each pathway from the Metacyc 
database and UniProt.42 BlastP43 was then performed for each 

of these protein sequences against a protein database based 
on 544 genomes (as a subset of the 2754 reference genomes) 
with a cut-off E value of 1e-10. This genome collection of 544 
genomes includes 420 genomes (56 species) of IBS-associated 
bacteria representing cluster IBSP and 124 genomes (34 species) 
of health-associated bacteria representing cluster IBSH (see 
below for IBSP/IBSH description). Gene enrichment was calcu-
lated using one-sided Fisher’s exact test with p value adjusted by 
Hochberg method.

RESULTS
Cohort summary
The cohort is summarised in figure  1. Among cases, there 
was female predominance (73%) and IBS-M was the the 
most common subtype (59%). Fourteen cases (25%) reported 
symptom onset after an episode of gastroenteritis. The median 
IBS-SSS at baseline in the 56 cases was 272, with 45 cases 
(88.2%) scoring moderate (IBS-SSS   >175 – n=25) or severe 
(IBS-SSS   >300 – n=20), consistent with a typical population 
presenting to gastroenterology clinics.28 In controls, the median 
IBS-SSS score was 7.5 (range 0–196). Mean age of subjects was 
38.7 (range 18–68) and controls 44.6 (range 18–74).

Comparison of gut microbiota from IBS cases and household 
controls
Metagenomic sequencing was carried out on 234 stool samples 
followed by reference genome mapping of sequence reads.24 Our 
inclusion of household controls reduced confounding by envi-
ronmental exposures (pets, prevailing diet, hygiene regime) and 
is important as gut microbes can frequently transmit between 
cohabiting humans.44 Indeed, we observed that samples coming 
from the same household had a more conserved microbiota 
composition compared with the overall variability between all 
cases and all controls (online supplemental figure 2C, Wilcoxon 
p=6.02E-05). To account for this potential confounder in subse-
quent analyses, we applied pairwise comparisons where possible.

We first focused on understanding the compositional variation 
in bacterial species to identify potential pathogenic imbalances 
in IBS case gut microbiomes. We compared baseline samples 
using the Chao1 index for the number of species (richness) 
and the Shannon index for the relative abundance of different 
species (alpha diversity). The richness was not lower in IBS cases 
(paired Wilcoxon p=0.12) (online supplemental figure 2A), but 
we did observe a lower alpha diversity in IBS cases compared 
with controls (paired Wilcoxon p=0.0092; online supplemental 
figure 2B). We also measured beta diversity between baseline 
microbiota samples using Aitchison distance and observed signifi-
cantly more taxonomic variability within IBS cases compared 
with controls (online supplemental figure 2C, paired Wilcoxon 
p=1.3E-79).

Stratification of IBS cases based on gut microbiota 
compositional subtypes
The high variability in diversity observed within baseline micro-
biomes from IBS cases warranted exploration of possible strati-
fication by microbiome profile, to identify distinguishing signals 
that went undetected during our initial analysis. We therefore 
performed unsupervised data clustering—a hypothesis-free 
approach designed to identify microbiota subtypes—in baseline 
samples from the 56 IBS pairs. This analysis revealed optimal 
data separation being achieved on division into two distinct 
microbiota taxonomic clusters, with 28 cases assigned to each 
(figure 2A, online supplemental figure 3A,B).

Table 1  Baseline characteristics of the 56 subjects with IBS 
according to the cluster separation based on the differences in the 
microbiome

Cluster 1 (n=28) Cluster 2 (n=28) P value

Female (%) 22 (79) 19 (68) 0.84

Age (mean±SD) 37.4±12.5 39.9±14.4 0.54

BMI (mean±SD) 29.4±7.7 26.5±5.4 0.08

IBSD (%) 12 (43) 11 (39) 1

IBSM (%) 16 (57) 17 (61) 1

Post-infectious IBS (%) 8 (28) 6 (21) 0.77

Median IBS-SSS 302 (n=24) (138–432) 249 (n=27) (79–439) 0.17

Median FODMAP score 8 (n=25) (5–12) 8 (n=27) (3–13) 0.58

Antidepressants (%) 6 (21) 3 (11) 0.48

PPIs/H2RAs (%) 1 (4) 0 (0) 1

Smokers (%) 4 (14) 1 (4) 0.36

Median alcohol intake (U/
week)

3.5 (n=24) (0–28) 0.5 (n=26) (0–20) 0.13

Fisher’s test was applied on categorical variables (sex, IBSD, IBSM, post-infectious IBS, 
medications, smoking status), while Wilcoxon’s test was applied on continuous variables 
(age, BMI, IBS-SSS, FODMAP score, alcohol intake) to estimate statistical significance of the 
difference between groups.
BMI, body mass index; FODMAPs, fermentable oligosaccharides, disaccharides, 
monosaccharides and polyols; IBS-SSS, Irritable Bowel Syndrome Severity Scoring System.
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This population stratification in two groups was replicated 
when considering cases paired with household controls (online 
supplemental figure 3C,D) but we could not observe a strong 
separation when clustering only the household controls (online 
supplemental figure 3E,F), suggesting that most of the signal 
captured in these clusters comes from variability in IBS cases. 
Principal coordinates analysis on the IBS cases alone captured a 
greater variability along the first two components (online supple-
mental figure 4, PC1: 14%, PC2: 9%) compared with cases plus 
controls. Microbiome composition in cluster 2 cases was signifi-
cantly more similar to household controls compared with the 
cluster 1 cases using pairwise dissimilarity (Wilcoxon p=0.0037, 
online supplemental figure 5). Compared with the overall vari-
ability previously observed across all IBS cases, microbiota 
diversity within each cluster was more conserved (online supple-
mental figure 6, Wilcoxon p=2.2E-08). We found no significant 
difference in age, gender, body mass index (BMI), subtype of 
IBS, post-infectious IBS or concomitant medications between 
the two clusters (table  1). Baseline symptom severity scores 
appeared modestly higher in cluster 1 than cluster 2 (median 

IBS-SSS=302 vs 249), but this was not statistically significant 
(Wilcoxon p=0.17).

The number of bacterial species (richness) appeared modestly 
lower in cluster 1 cases compared with cluster 2 microbiomes 
(Wilcoxon p=0.033), but no such difference was observed 
between respective controls (Wilcoxon p=0.57) (online supple-
mental figure 7A). Cases and controls from the same cluster 
show comparable richness (paired Wilcoxon cluster 1 p=0.073, 
cluster 2 p=0.69). Shannon diversity (alpha diversity) was 
clearly lower in IBS cluster 1 compared with cluster 2 cases 
(p=0.0002), but this difference was not seen between respective 
controls (p=0.078) (online supplemental figure 7B). Cases from 
cluster 1 had a lower alpha diversity when compared with their 
household controls (paired Wilcoxon p=0.0029), while this was 
not observed for cluster 2 (paired Wilcoxon p=0.41). Overall, 
our findings suggest that fewer bacterial species are represented 
in cluster 1 case microbiomes and abundance profiles are skewed 
towards a smaller set of bacteria compared with cluster 2.

Read abundance analysis identified distinct differences 
between bacterial species in the two IBS subtypes at baseline 
(MaAsLin2 q value  <0.1; online supplemental table 2). A total 
of 87 species were identified as significantly differentially abun-
dant between the two IBS subtypes (56 up in cluster 1 and 31 
up in cluster 2), but no such significant difference was observed 
between corresponding household controls. In IBS cluster 1, 
we observed a significant increase of bacteria from the Firmic-
utes phylum including known human pathogens (Clostridium 
difficile, Paeniclostridium sordellii, Clostridium perfringens, 
Streptococcus anginosus) (online supplemental figure 7C) and a 
significant depletion of multiple Bacteroides and Parabacteroides 
species (online supplemental figure 7D). Phylogenetic analysis 
showed a clear distinction between the dominant species from 
the Firmicutes phylum in cluster 1 and the dominant species from 
the Bacteriodetes phylum in cluster 2 (figure 2B). However, we 
did not observe a significant difference in abundance for these 
two phyla between groups (MaAsLin2 q-value: Firmicutes: 0.2, 
Bacteroidetes: 0.78), suggesting differences in a subset of species 
rather than an overall Firmicutes/Bacteroidetes imbalance.

Thus, we identified IBS subtypes with distinct microbiota 
signatures at baseline: cluster 1 contained lower bacterial diver-
sity, was depleted in commensal species from the Bacteroidetes 
phylum and enriched in species from the Firmicutes phylum, 
including human pathogens; and cluster 2 was indistinguishable 
from healthy household controls. We refer to cluster 1 as IBSP 
microbiome type for its pathogenic properties and cluster 2 as 
IBSH microbiome type due to its similarity to healthy household 
controls.

Enrichment of primary metabolism genes in gut microbiomes 
of IBSP patients
Bacterial species from the Bacteroidetes and Firmicutes phyla 
are evolutionarily and physiologically distinct, and contribute 
different core functions to the gut microbiome. Therefore, 
we reasoned that the functional capacity of IBSP microbiomes 
may contribute to IBS symptoms. To identify functional differ-
ences between the microbiomes of the two IBS subtypes, we 
performed an analysis of the functional capacity encoded in 
the metagenomes of baseline samples of IBSP and IBSH patients. 
This analysis was independent of the previous taxonomic anal-
ysis. We found a significant enrichment of 109 functional path-
ways and significant depletion of 13 functional pathways in IBSP 
microbiomes compared with IBSH microbiomes (online supple-
mental table 3). Further functional classification indicated that 

Figure 2  Analysis of diversity of microbiota profiles. (A) Beta diversity 
analysis of IBS cases and healthy controls: principal coordinate analysis 
for the two first components identifies two distinct clusters among 
cases, described as cluster 1 (cl1, red) and cluster 2 (cl2, blue). Overall 
dispersion of household controls is represented in grey. Variance 
explained by PC1: 10%, PC2: 8%. (B) Phylogenetic tree of 2754 human 
gut bacterial isolates generated using the 120 core genes. Outer 
circle distinguishes bacteria abundant in cl1 (red; n=420 genomes) 
and bacteria abundant in cl2 (blue; n=124 genomes). Top 5 prevalent 
families in each cluster are named. Branch colour distinguishes 
bacterial phyla belonging to Actinobacteria (yellow; n=363 genomes), 
Bacteroidetes (green; n=675 genomes), Firmicutes (dark blue; n=1562 
genomes) and Proteobacteria (purple; n=154 genomes).  on January 28, 2022 by guest. P
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the majority of enriched pathways in IBSP microbiomes (78.7%) 
could be classified to five major functional categories related to 
primary metabolism (figure 3). This signal was replicated in an 
analysis which included control samples, where 51 out of the 53 
significant findings were already reported in the 112 pathways. 
It suggests that functional differences between IBSP and IBSH 
patients are not attributable to environmental/lifestyle factors.

Since amino acid biosynthesis (25%) and carbohydrate metab-
olism (15.7%) were the two major functional categories that 
separate IBSP and IBSH cases, we next performed a targeted func-
tional enrichment analysis in IBSP microbiomes at the species 
level. For amino acid biosynthesis, this identified significant 
enrichment of genes involved in biosynthesis of tryptophan, 
threonine and histidine (online supplemental figure 8). Equiv-
alent analysis of carbohydrate metabolism identified significant 
enrichment of genes involved in lactose metabolism, fructose 
metabolism and trehalose metabolism, and biosynthesis of two 
short chain fatty acids (SCFA): butyrate and propionate (online 
supplemental figure 9).

Our results suggest specific functions involved in amino acid 
biosynthesis and metabolism of simple dietary sugars are distinct 
features in bacteria of the IBSP cluster at baseline, which are 
under-represented in bacteria of the IBSH cluster. Correlating 
the compositional (figure 2B) and functional (figure 3) features 

identified a subset of candidate species associated with the IBSP 
cluster (figure 3) and enriched in significant pathways. A strong 
positive correlation was observed between the abundance of these 
pathways and abundance of the bacterial species with known 
pathogenic capabilities (C. difficile, P. sordellii, C. perfringens) 
and a pathobiont associated with UC (Faecalicatena gnavus, 
previously named Ruminococcus gnavus45). Commensal species 
depleted in IBSP patients did not encode these pathways.

Low FODMAP dietary intervention corrects IBSP microbiomes
A total of 41 IBS cases and their household controls followed 
a low FODMAP diet for 4 weeks and provided a stool sample 
while on the diet. There was no significant difference in 
FODMAP scores at baseline or on the diet between IBSP and 
IBSH clusters, and as expected, the scores fell significantly for 
each cluster on diet (online supplemental material 1—FODMAP 
scores, Wilcoxon p=<0.00001). There was a significant reduc-
tion in the IBS-SSS on the low FODMAP diet (mean IBS-SSS pre-
diet=278, on diet=128) (figure 4A). This was observed both in 
patients harbouring IBSP and IBSH-type microbiomes (figure 4B) 
but the difference in degree of response was more pronounced 
in IBSP patients (ΔIBS-SSS in IBSP=194 vs IBSH=114; Wilcoxon 
p=0.02) (figure 4C). Response rates defined by a fall in IBS-SSS  

Figure 3  Functional and taxonomic characterisation of IBSP subjects baseline microbiomes. Pie chart indicates the distribution of pathways 
identified as significantly enriched in IBSP subjects at baseline and coloured according to their MetaCyc functional category. A selection of candidate 
pathways are represented in rows (coloured as in the pie chart). Species significantly different in abundance between IBSP and IBSH subjects are 
represented in columns and coloured by phylum (Bacteroidetes in green and Firmicutes in blue). For each combination of pathway and species, 
Spearman correlation on their respective abundance is reported (from strongly positive in red to strongly negative in blue).
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>50 points27 between visits 1 and 2 followed the same trend but 
did not reach statistical significance (14/16 (87.5%) of IBSP vs 
13/20 (65%) of IBSH; χ2 test p=0.12).

IBS-SSS remained lower than at visit 1, 3 months after the 
completion of the low FODMAP diet (mean IBS-SSS post-
diet=117), but the amount of FODMAP data obtained at this 
time point did not allow analysis with adequate power.

Comparison of taxonomic profiles between baseline (pre-diet) 
stool samples and those obtained while on the low FODMAP 
diet for 4 weeks revealed a significant shift in the microbiota 
composition of IBSP cases but not IBSH cases nor healthy controls 
(figure 5A). Compared with the differences seen between IBSP 
and IBSH at baseline, beta diversity analysis showed the micro-
biome profiles from IBSP cases became more similar to those seen 
in IBSH cases and healthy controls while on the low FODMAP 
diet. This was apparent as a decreased variability in microbiome 
composition within all IBS cases (IBSP  +IBSH combined) on 
diet compared with pre-diet (online supplemental figure 10, 
paired Wilcoxon test p=1E-19). It was also evident that the 
diet produced a greater shift in microbiota composition in IBSP 
compared with IBSH, with a bigger distance between sample 
profiles from the same case at the two timepoints (baseline and 
on-diet) (online supplemental figure 10, paired Wilcoxon test 
p=0.03).

Diet intervention shifted the taxonomic composition of IBSP 
cases by increasing Bacteroides levels (B. cutis, B. stercoriro-
soris), and decreasing pathobiont levels (including C. difficile, 
Streptococcus parasanguinis, Paeniclostridium sordellii) towards 
those seen in IBSH (figure 5B,C) and household controls (online 
supplemental figure 11). The functional profile of the IBSP micro-
biome was also impacted by the diet intervention, for example, 
producing a decrease in degradation of the disaccharide treha-
lose (figure 5D) and a decrease in glycolysis to levels comparable 
to those in IBSH patients and healthy controls (figure 5E).

After the low FODMAP diet ended, participants returned to 
a normal diet, although with cases limiting foods identified as 
triggering their symptoms (online supplemental material 1, the 
Dietary intervention section). Although the numbers available 
for 3-month follow-up limit the strength of the conclusions at 
this timepoint, there appeared to be no significant shift in the 
microbiota diversity of the cases in the two clusters compared 

with while on full dietary restriction (Wilcoxon p=0.12, online 
supplemental figure 12) and no significant change in the abun-
dance of any bacterial taxa between these timepoints. Thus, the 
shift in the IBSP microbiota to a heathy profile appeared stable 
for at least 3 months and correlated with continuing symptom-
atic well-being (figure 4A).

DISCUSSION
We defined two gut microbiome subtypes in IBS cases with 
distinct signatures based on species and encoded micro-
bial functions, and differential clinical responses to a low 
FODMAP diet. Although the early microbiome literature is 
rather inconsistent regarding taxa implicated in IBS and the 
presence of subtypes,11 possibly reflecting clinical hetero-
geneity, choice of controls and methodology among other 
factors, our work is congruent with the observations of more 
recent studies12 13: Jeffery et al used shotgun 16S rRNA gene 
microbiome profiling and metabolomics to provide evidence 
of IBS microbiome subtypes, identifying Lachnospiraceae 
species and enrichment in amino acid biosynthesis. Not only 
do our results replicate this stratification within a larger IBS 
cohort, but being based on shotgun metagenomics data they 
benefit from both greater taxonomic resolution— identi-
fying an increase in selected Firmicutes species and depletion 
of Bacteroidetes species in one subgroup—and the ability to 
analyse the functions encoded in the microbiome. Further-
more, the dietary intervention allowed us to characterise the 
clinical responses of each patient subtype; and inclusion of 
household controls, following the same dietary intervention, 
was a unique feature of our study designed to correct known 
confounding environmental effects.46

We refer to the IBS microbiome subtypes as IBSp (patho-
genic) and IBSH (healthy). Overall, while recognising the 
likely contribution of a placebo effect, 75% of IBS cases in 
our study improved on a low FODMAP diet as measured by 
a decrease in IBS-SSS of more than 50 points; but higher 
degrees of symptom response were seen in cases with IBSP 
compared with IBSH microbiomes. IBSP microbiomes were 
notably different from those of IBSH cases and healthy 
household controls, with an enrichment of distinct bacte-
rial species and gene families seen in IBSP that allows us to 
propose potential pathogenic mechanisms.

Within the dysbiotic IBSP microbiomes, we saw a signifi-
cant enrichment of a broad range of evolutionarily distinct 
Firmicutes species, including known human pathogens 
(C. difficile, C. sordellii and C. perfringens), a pathobiont 
associated with UC (Faecalicatena gnavus, previously named 
R. gnavus45) and known gut species not previously identi-
fied as human pathobionts (C. clostridioforme and Fusi-
catenibacter saccharivorans). Interestingly, we also saw an 
enrichment in IBSP microbiomes of the lactic acid bacteria 
Streptococcus parasanguinis and Streptococcus timonensis 
that are usually found in the oral cavity.

At a functional level, IBSP microbiomes were enriched in 
genes and pathways involved in metabolising carbohydrates. 
This could lead to increased anaerobic glycolysis and asso-
ciated carbon dioxide, hydrogen and methane production 
in individuals with these microbiomes, with consequent 
increased gut distension contributing to increased symp-
toms. Among simple sugars recognised as FODMAPs are 
lactose and fructose so our functional microbial analysis 
provides a list of candidate bacteria for further analysis 
(online supplemental figure 9). The disaccharide trehalose 

Figure 4  Clinical response in 36 subjects undergoing dietary 
intervention and providing IBS-SSS. (A) Response for combined IBSP and 
IBSH subjects pre-diet and on-diet also includes IBS-SSS in 15 subjects 
at visit 3. (B) Response pre-diet and on diet according to the microbiota 
cluster pre-diet. (C) Change in IBS-SSS from pre-diet value to on diet 
value for patients in each cluster. Paired Wilcoxon’s test was used 
to estimate statistical significance of the difference between groups 
(****p<0.0001, ***p<0.001, *p<0.05, ns: p>0.05). Bar height shows 
mean value, error bars show SE. IBS-SSS, Irritable Bowel Syndrome 
Severity Scoring System.
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is not a FODMAP, but if inaccessible to the brush border 
enzyme trehalase, for example, due to food-residue consis-
tency, it may enter the colon to exert FODMAP-like prop-
erties through fermentation. Although not specifically 
prohibited, there is crossover between foods excluded on 
the low FODMAP diet and foods high in this disaccharide 
such as mushrooms. Of note, specific lineages of C. difficile 
have evolved to avidly metabolise trehalose and in so doing 
increase their abundance47—one route by which specific 
‘pathogenic’ bacterial species could trigger IBS symptoms. 

Trehalose could trigger IBS symptoms by fuelling the growth 
of specific ‘pathogenic’ bacterial species.

Microbial metabolism of hexoses derived from FODMAP 
carbohydrates produces pyruvate by anaerobic glycolysis in 
the gut. Pyruvate is a key metabolite that feeds into SCFA 
production.48 Our pathway analysis (online supplemental 
figure 9) predicts that several bacterial species enriched in 
IBSP microbiomes contain genes for converting pyruvate 
to butyrate (classical pathway) and/or propionate (acrylate 
pathway).49 Butyrate and propionate are major metabolites in 

Figure 5  Microbiome beta diversity before and during diet intervention. (A) Principal coordinate analysis of IBS cases separated into two clusters 
showed a diet-triggered shift in IBSP (red) only—not seen in IBSH subjects (blue) or healthy controls (grey). (B, C) Impact of diet intervention on 
taxonomic abundance. Linear mixed models identified differentially abundant species between IBSP and IBSH cases pre-diet and on diet. Centre log 
ratio (CLR) transformed abundances for representative species are shown. (B) Pathobiont species, such as Clostridium difficile, become less abundant 
in IBSP during diet intervention. (C) Members of Bacteroides genus become more abundant in IBSP during diet intervention. (D, E) Impact of diet 
intervention on pathway abundance. Relative abundances for representative pathways are shown. (D) Degradation of the fermentable disaccharide 
trehalose became less abundant in IBSP during diet intervention. (E) Glycolysis became less abundant in IBSP during diet intervention. Wilcoxon’s test 
was used to estimate statistical significance of the difference between groups (****p<0.0001, ***p<0.001, **p<0.01, *p<0.05, ns: p>0.05). Box 
and whiskers show median and IQR.

 on January 28, 2022 by guest. P
rotected by copyright.

http://gut.bm
j.com

/
G

ut: first published as 10.1136/gutjnl-2021-325177 on 22 N
ovem

ber 2021. D
ow

nloaded from
 

https://dx.doi.org/10.1136/gutjnl-2021-325177
https://dx.doi.org/10.1136/gutjnl-2021-325177
http://gut.bmj.com/


8 Vervier K, et al. Gut 2021;0:1–10. doi:10.1136/gutjnl-2021-325177

Gut microbiota

the colon that bind to GPR receptors 41, 43 (propionate) and 
109A (butyrate): these SCFAs regulate tryptophan hydrolase 
gene transcription in enterochromaffin cells facilitating the 
production of 5-hydroxytryptamine (5HT) from tryptophan; 
5HT is postulated as a key agent in the production of IBS 
symptoms.50 51 Moreover, in IBSP microbiomes, we observed 
an enrichment of genes for tryptophan biosynthesis which 
would facilitate this mechanism.

We also found enrichment in IBSP microbiomes for the 
genes coding for the biosynthesis of amino acids including 
histidine, arginine, ornithine, tryptophan, alanine and thre-
onine (online supplemental figure 8). Interestingly, Lee et al52 
found elevated levels of threonine, tryptophan and phenyl-
alanine, as well as amino acid metabolites cadaverine and 
putrescine, in stool samples of patients with IBS, providing 
direct evidence of altered amino acid metabolism. Histidine 
is a precursor to histamine, implicated in the generation of 
IBS symptoms following its release from mast cells; hista-
mine can itself also activate these cells.53

Although we detected higher levels of specific pathogens 
in IBSP microbiomes, we have no evidence to suggest they 
are causing IBS symptoms through known toxin virulence 
factors. Instead, the data suggest an enrichment of primary 
metabolic pathways in diverse Firmicutes species. Our anal-
ysis indicates a potential for increased production of amino 
acids; and SCFA through metabolising FODMAP carbohy-
drates. It is possible that such metabolites and their deriva-
tives could be noxious at high levels within the colon, or be 
pathological if produced within the wrong intestinal niche, 
a type of metabolic virulence, leading to IBS symptoms. One 
key finding from our work is that IBSP and IBSH microbi-
omes have distinct bacterial community responses to low 
FODMAP dietary intervention, providing a basis to define 
a mode of action. Thus, it is possible that removal of the 
eliciting dietary component starves the pathobionts leading 
to reduction in their growth and metabolism and a conse-
quent decrease in symptoms, accompanied by an expansion 
of commensal or symbiotic species leading to a health-
associated microbiome. The evidence associating diet, the 
microbiome and symptoms in IBSP is compelling but studies 
following the introduction of candidate organisms into an 
animal model are needed to prove the relationship is causal.

Although the number of case/control pairs (n=21) who 
provided follow-up samples at 12 weeks after rechallenge 
with FODMAPs was relatively modest, and some continued 
to exclude specific FODMAP-containing foods, it was inter-
esting to note that both their symptoms (figure  4A) and 
microbiomes (online supplemental figure 12) remained 
notably stable. This corroborates and perhaps helps to 
explain the durable benefit that can be seen from a low 
FODMAP diet.

We observed a differential response of IBSP and IBSH 
microbiome subtypes to the low FODMAP diet, suggesting 
that some gut microbiomes are more influenced by dietary 
interventions. Based on our analysis, it is not obvious how 
or whether IBSH microbiomes contribute to IBS symptoms 
since they are indistinguishable from household control 
microbiomes and did not significantly alter in response to 
the low FODMAP diet. That symptoms in IBSH cases still 
improved somewhat on FODMAP reduction suggests either 
that the response is linked to a non-bacterial component of 
the microbiome, such as viruses, or is unconnected mech-
anistically to the microbiota, perhaps instead reflecting a 
direct effect of dietary constituents and their metabolites on 

gut neuronal function or osmotic load or indeed simply a 
placebo effect in this group.

The presence of microbially defined IBS subtypes with 
differing responses to intervention has been suggested 
by some previous studies. In a recent faecal microbiota 
transplantation study, patients with IBS responding to the 
treatment showed enrichment in taxa such as Bacteroides, 
positively correlated with IBS-SSS decrease, as well as a drop 
in pathobionts such as Streptococci.54 In other studies, stool 
microbial profiles assessed by a commercial kit correlated 
with differing responses to a low FODMAP diet55; and the 
profile of faecal volatile organic compounds, postulated as 
reflecting microbiome differences, predicted response to a 
low FODMAP diet or probiotics.56

Our study does have limitations. The sample size was rela-
tively modest: the strict inclusion criteria, the restriction of 
concomitant medications and the required participation of 
household controls needing to follow the low FODMAP diet 
hindered recruitment. Dietary information was limited to the 
last week of the interventional phase of the low FODMAP 
diet: participants could have been tempted to follow a more 
rigorous diet on the week they had to report their dietary 
intake. With the design of the study, it was impossible to 
exclude other factors, apart from diet, that could have 
impacted the benefit observed, including the psychological 
impact of being assessed within a research study, the placebo 
effect that has been described in other studies, and referral 
bias. Our findings of distinct IBS clusters based on micro-
biome profiles, the shift on the low FODMAP diet and the 
clinical responses, should be validated in other populations 
from different geographical distributions and exposed to 
different dietary habits.

The identification of a microbial signature ‘biomarker’ 
that correlates with improved response to a low FODMAP 
diet may, if validated, allow better stratification and selec-
tion of patients likely to benefit from the diet. In IBSP 
subjects, there is the prospect to consider therapeutic strat-
egies that manipulate the microbiota in the same direction 
and achieve the same symptomatic improvement but without 
the need to undergo the same stringent dietary restrictions. 
Further, closer study of the implicated microbes may give the 
opportunity to better understand the interaction between 
diet, microbiota, metabolites and the human gut-brain axis 
that leads to the development of IBS symptoms in more than 
10% of the world’s population.
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Supplementary Materials 
 

Dietary intervention  

At the first visit, baseline IBS symptom questionnaires and 7-day food diaries (documenting 

habitual intake) were collected from all participants and assessed by experienced GI 

dietitians. Cases who on initial assessment were already consuming a diet low in FODMAPs 

were not included in the study. Education was provided on how to follow the low FODMAP 

diet by a specialist dietitian with supporting written literature.  

At visit 2, after 4 weeks on the low FODMAP diet, further IBS symptom questionnaires and 7-

day food diaries were collected. Household controls, and cases who had not responded to the 

diet, were advised to return to their normal diet after 4 weeks on the low FODMAP diet.  If 

IBS subjects had responded to the diet education was provided on the FODMAP re-

introduction phase with supporting literature. Each subgroup of fermentable carbohydrate: 

GOS, lactose, fructose, sorbitol, mannitol plus high fructan containing foods: wheat, onion, 

garlic and leeks, was individually challenged in increasing amounts during a period of up to 

three days. If no symptoms were triggered during the full 3-days of testing, the challenge food 

was removed from the diet and the next challenge food selected to begin a new challenge. If 

symptoms were triggered on re-introducing a food, the challenge process was stopped to 

allow symptoms to settle before testing a new food. After the challenges were completed 

participants could reintroduce FODMAP foods to tolerated levels (as identified through the 

challenge process) to provide symptom relief in the long term. 

At visit 3, 12-weeks after visit 2, final IBS symptom questionnaires and food diaries were 

collected and personalised dietary advice was provided depending on the outcomes of the 

food re-introduction process.  

 

FODMAP scores 

 

FODMAP scores were calculated after McIntosh et al. (McIntosh et al. 2017) from the 7 day 

food diary participants provided at each time point in the study. The FODMAPs were grouped 

into 7 categories (lactose, fructose, fructans from fruit and vegetables, fructans from cereal, 

fructans from garlic and onion, galactoligosaccharides and polyols). Depending on the 

FODMAP type the frequency of ingestion was either scored for daily ingestion (and the score 

averaged over the week) or for total weekly intake. A low intake was scored 0, moderate 

intake 1 and a high intake 2. If participants had not provided full information on ingredients 

on dishes (e.g.ready made meals or in restaurants or take away) the dietitians made 

assumptions from the typical ingredients included in these dishes. If a food contained a 

significant amount of more than one FODMAP type it would be scored in both groups. Each 

food diary was scored between 0-14, the higher the score reflecting a higher intake of wider 

variety of FODMAPs in the diet. If a participant had a particularly high intake of one particular 

FODMAP e.g. fructan cereals but a low dietary variety the score could appear lower than a 

participant with a moderate intake of a variety of the different FODMAP groups.  
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Median FODMAP scores in 41 subjects undergoing dietary intervention 

 Cluster 1 Cluster 2 p 

          

Pre-diet (visit 1) 

9 

Range 5 – 12 

n = 15 

8 

Range 3 – 13 

n = 19 

 

0.44 

 

On diet (visit 2) 

 

1 

Range 0 – 2 

n = 15 

0 

Range 0 – 6 

n = 19 

 

0.47 

 

Post diet (visit 3) 

7.5 

Range 6 - 10 

n = 4 

7.5 

Range 3 – 10 

n = 12 

 

N.A. 

 

FODMAP scores shown are for subjects with corresponding stool samples at each visit. The p 

values (Wilcoxon) in the table compare the scores between the clusters at each visit. For each 

cluster there was a highly significant fall in the score on diet (visit 2) compared to pre-diet 

(visit 1), p = < 0.00001. 

 

 

McIntosh K, Reed DE, Schneider T, Dang F, Keshteli AH, De Palma G, et al. FODMAPs alter 

symptoms and the metabolome of patients with IBS: A randomised controlled trial. Gut. 

2017;66(7):1241-51. 
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