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ABSTRACT
Objective Tryptophan can be catabolised to various 
metabolites through host kynurenine and microbial indole 
pathways. We aimed to examine relationships of host and 
microbial tryptophan metabolites with incident type 2 
diabetes (T2D), host genetics, diet and gut microbiota.
Method We analysed associations between circulating 
levels of 11 tryptophan metabolites and incident T2D in 
9180 participants of diverse racial/ethnic backgrounds from 
five cohorts. We examined host genome- wide variants, 
dietary intake and gut microbiome associated with these 
metabolites.
Results Tryptophan, four kynurenine- pathway 
metabolites (kynurenine, kynurenate, xanthurenate 
and quinolinate) and indolelactate were positively 
associated with T2D risk, while indolepropionate 
was inversely associated with T2D risk. We identified 
multiple host genetic variants, dietary factors, gut 
bacteria and their potential interplay associated with 
these T2D- relaetd metabolites. Intakes of fibre- rich 
foods, but not protein/tryptophan- rich foods, were the 
dietary factors most strongly associated with tryptophan 
metabolites. The fibre- indolepropionate association was 
partially explained by indolepropionate- associated gut 
bacteria, mostly fibre- using Firmicutes. We identified 
a novel association between a host functional LCT 
variant (determining lactase persistence) and serum 
indolepropionate, which might be related to a host 
gene- diet interaction on gut Bifidobacterium, a probiotic 
bacterium significantly associated with indolepropionate 
independent of other fibre- related bacteria. Higher 
milk intake was associated with higher levels of gut 
Bifidobacterium and serum indolepropionate only among 
genetically lactase non- persistent individuals.
Conclusion Higher milk intake among lactase non- 
persistent individuals, and higher fibre intake were 

associated with a favourable profile of circulating 
tryptophan metabolites for T2D, potentially through the 
host–microbial cross- talk shifting tryptophan metabolism 
toward gut microbial indolepropionate production.

INTRODUCTION
Tryptophan is an essential amino acid that plays 
a critical role in human health and disease.1 In 
addition to its role in serotonin and melatonin 
biosynthesis, tryptophan is the sole source for the 

Significance of this study

What is already known on this subject?
 ► Tryptophan can be catabolised to various 
metabolites through host kynurenine and 
microbial indole pathways.

 ► Evidence from animal studies suggests a 
host–microbiota interaction on tryptophan 
metabolism which may affect host metabolic 
health.

 ► Circulating levels of some tryptophan 
metabolites have been associated with risk of 
type 2 diabetes in human studies.

 ► Genetic variants located on genes that are 
involved in the host tryptophan- kynurenine 
pathway and dietary factors have been 
associated with circulating tryptophan 
metabolites, but the role of gut microbiome 
and its interplay with host genetics and diet 
in tryptophan metabolism remain unclear in 
humans.
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kynurenine pathway (online supplemental figure S1),1 in which 
tryptophan is first catabolised into kynurenine, mainly regulated 
by indoleamine 2,3- dioxygenase (IDO) and trypophan-2,3- 
dioxygenase (TDO) and then kynurenine is processed into several 
downstream metabolites, including kynurenate, xanthurenate 
and quinolinate. The kynurenine pathway is involved in immune 
activation and inflammation regulation,1 and has been associated 
with obesity and insulin resistance.2 3 In addition, tryptophan 
can be catabolised by gut microbiota, producing a variety of 
indole derivatives (eg, indoleacetate, indolelactate and indole-
propionate) which have been shown to have beneficial effects on 
host metabolism.4

Emerging evidence from animal studies suggests a host–micro-
biota interaction on tryptophan metabolism which may affect host 
metabolic health.5 In mice with genetic deficiency of IDO, tryp-
tophan metabolism may shift from the host kynurenine pathway 
towards gut microbial indole derivative production, leading 
to an improvement in insulin sensitivity.5 In human studies, 
metabolomics using a broad- spectrum of metabolites found 
that plasma levels of tryptophan6 and two kynurenine- pathway 
metabolites (kynurenate and xanthurenate)7 were associated 
with increased risk of type 2 diabetes (T2D), while a microbial 
metabolite of tryptophan, indolepropionate, was associated with 
decreased risk of T2D,8 but relationships of other tryptophan 
metabolites with T2D remains unclear. Genome- wide associa-
tion studies (GWAS) of the human blood metabolome identified 
genetic loci associated with some tryptophan metabolites and 
many of them might be involved in host tryptophan- kynurenine 

metabolism or metabolite transportation.9–11 Dietary tryptophan 
is the only source of tryptophan and its catabolites for humans,1 
while several human studies found strong positive associations of 
fibre- rich food (eg, fruits and vegetables) and fibre intake with 
circulating indolepropionate levels.8 12 13 The human gut micro-
biome might be involved in this relationship but underlying 
mechanisms remain unclear, since no evidence has shown that 
indolepropionate can be derived from microbial catabolism of 
phytochemical compounds or fibre fermentation. A recent study 
in women reported an association between gut microbiome 
composition and serum indolepropionate which appeared to be 
independent of host dietary fibre intake.14 To the best of our 
knowledge, no studies have examined host and microbial tryp-
tophan metabolism and T2D integrating data on host genome- 
wide variants, dietary intake, gut microbiome and circulating 
levels of both host and microbial tryptophan metabolites. There 
is a need to integrate different layers of data to identify more 
relevant associations, and more importantly, potential links 
among these association signals, which may help better under-
stand host–microbial cross- talk in tryptophan metabolism and its 
implication in human metabolic health.

In this study, we hereby examined prospective associations 
between circulating levels of 11 major host and microbial tryp-
tophan metabolites and incident T2D in five epidemiological 
cohorts of multiple racial/ethnic groups, hypothesising that 
kynurenine- pathway metabolites are associated with higher risk 
of T2D, while microbial indole derivatives are associated with 
lower risk of T2D. Furthermore, by integrating multiomics data, 
we identified host genetic, dietary and gut microbial factors asso-
ciated with these metabolites.

METHODS
Study population
The main study population was the Hispanic Community Health 
Study/Study of Latinos (HCHS/SOL), with subsequent replica-
tion analyses conducted in four additional cohorts of multiple 
racial/ethnic groups: the Atherosclerosis Risk in Communities 
Study (ARIC), the Framingham Heart Study (FHS), the Women’s 
Health Initiative (WHI) and a case- cohort study nested in the 
Prevención con Dieta Mediterránea Study (PREDIMED) (online 
supplemental table S1). The HCHS/SOL is a population- based 
cohort that recruited 16 415 Hispanic/Latino adults aged 18–74 
years living in 4 US metropolitan areas.15 A comprehensive 
battery of interviews and a clinical assessment with fasting blood 
draw were conducted at in- person clinic visits during 2008–2011 
(baseline) and 2014–2017 (visit 2). Usual dietary intake was esti-
mated using the National Cancer Institute methodology based 
on two 24 hours dietary recalls administered at baseline.16 The 
ARIC study enrolled mostly white and black participants aged 
45–64 years from four communities in the USA in 1987–1989.17 
The FHS was initiated in 1971 and we included FHS partic-
ipants aged 40–65 years who attended the fifth examination 
(1991–1995).18 The WHI study was launched in 1993 enrolling 
US women aged 50–79 years.19 We also used data from a case- 
cohort study nested in the PREDIMED study which is a multi-
centre trial initiated in 2008.20 21

An expanded description of study populations, data collection 
and statistical analyses is provided in online supplemental file 1. 
All participants gave written informed consent.

Patient and public involvement
Patients or the public were not involved in the design, or conduct, 
or reporting, or dissemination plans of our research.

Significance of this study

What are the new findings?
 ► In large- scale populations with diverse racial/ethnic 
backgrounds, circulating levels of tryptophan and several 
kynurenine- pathway metabolites were positively associated 
with risk of type 2 diabetes, while a microbial indole 
derivative, indolepropionate, was inversely associated with 
risk of type 2 diabetes. The indolepropionate- type 2 diabetes 
association was suggested to be potentially causal by the 
latent causal variable model.

 ► Intakes of fibre- rich foods, but not protein/tryptophan- rich 
foods, were the dietary factors most strongly associated 
with circulating tryptophan metabolites. The fibre- 
indolepropionate association can be partially explained 
by indolepropionate- associated gut bacteria (mostly fibre- 
utilising Firmicutes bacteria).

 ► We identified a novel genetic association between a host 
functional LCT variant (determining lactase persistence) 
and serum indolepropionate, which might be a result of 
host gene–diet interaction on gut Bifidobacterium. Higher 
milk intake was associated with higher levels of gut 
Bifidobacterium and serum indolepropionate only among 
genetically lactase non- persistent individuals.

How might it impact on clinical practice in the foreseeable 
future?

 ► These findings contribute to our understanding of the 
host–microbial cross- talk in tryptophan metabolism and its 
implications in human metabolic health and disease, and 
may help to identify high- risk individuals based on circulating 
metabolite profiles for targeted interventions through dietary 
intervention and gut microbiota modification.
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Ascertainment of incident T2D
In all studies, participants free of diabetes at baseline who met at 
least one of the following criteria during the follow- up visits or 
telephone interviews were defined as incident T2D cases: fasting 
time >8 hours and fasting glucose ≥7.0 mmol/L (126 mg/dL), 
fasting ≤8 hours and non- fasting glucose ≥11.1 mmol/L (200 mg/
dL), 2- hour post- oral glucose tolerance test glucose ≥11.1 mmol/L 
(200 mg/dL), homeglobine A1c ≥6.5%, treatment with antidiabetic 
medications or self- reported physician- diagnosed diabetes.

Metabolomic profiling
In HCHS/SOL, serum metabolomic profiling was performed using 
the discoveryHD4 platform at Metabolon (Durham, North Caro-
lina, USA) in 3972 participants randomly selected from the whole 
cohort at baseline.22 Eleven tryptophan metabolites, including 
tryptophan, serotonin, five kynurenine- pathway metabolites 
(kynurenine, kynurenate, xanthurenate, quinolinate and pico-
linate), and four indole derivatives (indoleacetate, indolelactate, 
indolepropionate and indoxyl sulfate) (online supplemental figure 
S1), were captured by an untargeted liquid chromatography- mass 
spectrometry (LC- MS) approach. In ARIC, seven tryptophan 
metabolites were available in the baseline serum metabolomics 
data measured by a similar LC- MS approach at Metabolon Inc.17 
In other studies, baseline plasma tryptophan metabolites (eight in 
FHS; five in PREDIMED; seven in WHI) were measured using 
LC- MS approaches at the Broad Institute (Cambridge, Massa-
chusetts, USA).18 19 21 Metabolomic approaches at both Metab-
olon and the Broad Institute are semiquantitative. We performed 
inverse normal transformation on relative levels of metabolites and 
conducted analyses separately within each study.

Genome-wide genotyping and imputation
Genotyping was performed using a customised Illumina array 
(15 041 502 B3; llmina Omni 2.5M array plus ~150K custom 
SNPs) in HCHS/SOL,23 the Affymetrix V.6.0 chip in ARIC,24 and 

the Affymetrix 500K and a 50K Human Gene Focused Panel in 
FHS.9 Genome- wide imputation was carried out based on the 
1000 Genomes Project phase 3 reference panel in HCHS/SOL 
and ARIC, and the HapMap CEU population reference panel 
in FHS.

Metagenomic sequencing and taxonomic profiling
Metagenomics sequencing was performed on DNA extracted 
from faecal samples collected by Flinders Technology Association 
(FTA) card from 3035 HCHS/SOL participants enrolled in a gut 
microbiome ancillary study during the HCHS/SOL Visit 2,25 by 
a novel shallow- coverage method of shotgun sequencing using 
Illumina platforms.26 To account for variability in sequencing 
depth, centred log- ratio transformation was applied to taxo-
nomic abundances using R/microbiome. Ninety- two bacterial 
genera with average relative abundance ≥0.01% were included 
in the current analyses.

Statistical analysis
Figure 1 shows a workflow of our analysis. In stage I, we exam-
ined associations of circulating tryptophan metabolites with inci-
dent T2D, host genetics, dietary intake and gut microbiota using 
data from multiple studies (online supplemental table S1). Cox 
regression was used to estimate HRs and 95% CIs of incident 
T2D per SD increment in metabolites in each cohort separately, 
adjusting for demographic, social, behavioural and health- related 
factors, and other study- specific covariates (online supplemental 
table S2). Results from each of the cohorts were combined using 
a fixed- effect meta- analysis. GWAS of standardised metabolite 
levels were conducted separately in 3933 HCHS/SOL partici-
pants, 1509 ARIC white participants and 1772 ARIC black 
participants, controlling for age, sex, population stratification 
and other study- specific covariates. GWAS summary statistics 
for metabolites in 1438 whites from FHS, were obtained from a 

Figure 1 Overview of the workflow integrating host genetics, diet, gut microbiota and circulating metabolites in relation to T2D. Eleven tryptophan 
(TRP) metabolites included TRP, serotonin, five kynurenine- pathway metabolites (kynurenine, kynurenate, xanthurenate, quinolinate and picolinate), 
and four indole derivatives (indoleacetate, indolelactate, indolepropionate (IPA) and indoxyl sulfate). LCT- rs498823, a function variant related to 
lactase persistence. ARIC, Atherosclerosis Risk in Communities Study; DIAGRAM, Diabetes Genetics Replication and Meta- analysis; GWAS, genome- 
wide association study; HCHS/SOL, Hispanic community health Study/Study of Latinos; IPA, indolepropionic acid; T2D, type 2 diabetes.
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previous publication.9 Meta- analyses of GWAS summary statistics 
were conducted using METAL.27 Associations of serum metab-
olites with 10 food groups which capture commonly consumed 
foods, three macronutrients, and two nutrients of interest (fibre 
and tryptophan) were analysed using multivariable linear regres-
sion in 3938 HCHS/SOL participants. A medication analysis 
using multiple mediator models28 was performed to examine the 
potential mediating effect of serum tryptophan metabolites on 
the association between the overall diet quality, measured by the 
Alternate Healthy Eating Index 2010 (AHEI-2010),29 and inci-
dent T2D in 2,821 HCHS/SOL participants. Associations of 92 
gut bacterial genera with four indole derivatives were assessed 
by multivariable linear regression in 759 HCHS/SOL partici-
pants. Based on findings from stage I analyses, we performed 
multiple explanatory analyses in stage II (figure 1 and online 
supplemental table S3). We used linkage disequilibrium score 
regression30 to estimate genetic heritability of metabolites and 
their genetic correlations with T2D. We applied the latent causal 
variable (LCV) model, which has been recommended to distin-
guish genetic correlation from causation, to test potential causal 
relationships between metabolites and T2D, as conventional 
Mendelian Randomisation approaches might be confounded 
by genetic correlations reflecting shared aetiology.31 GWAS 
summary statistics for metabolites in this study (up to 9290 
participants) and those for T2D obtained from the Diabetes 
Genetics Replication and Meta- analysis (DIAGRAM) consor-
tium (55 005 T2D cases and 400 308 controls),32 were used in 
the genetic correlation analysis and the LCV models. In HCHS/
SOL, we used multivariable linear regression to examine asso-
ciations between fibre intake and indolepropionate- associated 
bacterial genera (n=2759), and compared associations between 
fibre intake and indolepropionate with and without adjustment 
for indolepropionate- associated bacterial genera (n=752). A 
mediation analysis using structural equation modelling33 was 
conducted to examine whether indolepropionate- associated 

bacterial genera may partially explain the association between 
fibre intake and indolepropionate. In HCHS/SOL, we applied 
multivariable linear regression to examine associations of LCT- 
rs4988235 with milk intake (n=12 531), gut Bifidobacterium 
abundance (n=2368) and serum indolepropionate (n=3933). 
Multivariable linear regression was used to examine associations 
of milk intake with gut Bifidobacterium abundance and serum 
indolepropionate levels stratified by the LCT- rs4988235 geno-
type (lactase persistence AA/AG vs lactase non- persistence GG), 
and the interaction between LCT- rs4988235 and milk intake 
was examined by introducing an interaction term. To validate 
the interaction between milk intake and LCT- rs4988235 on 
indolepropionate, a replication analysis was performed in ARIC 
(1504 whites and 1674 blacks).

Analyses were performed using R software unless otherwise 
stated. In GWAS, p<4.5×10−9 (5.0×10–8/11 metabolites) was 
considered as genome- wide significant, and a false discovery rate 
(FDR) <0.05 was considered as statistically significant for other 
primary analyses.

RESULTS
Tryptophan metabolites and incident T2D
Baseline characteristics of study participants are shown in online 
supplemental table S4. Among 2821 US Hispanics/Latinos 
without diabetes at baseline from HCHS/SOL, 367 incident T2D 
cases were identified during a median of 5.7 years of follow- up. 
Among 6359 participants, free of diabetes at baseline, with 
diverse racial/ethnic backgrounds from ARIC, FHS, WHI and 
PREDIMED, 1665 incident T2D cases were identified during 
follow- up. Of 11 metabolites, tryptophan, four kynurenine 
metabolites (kynurenine, kynurenate, xanthurenate and quino-
linate) and indolelactate were positively associated with incident 
T2D, while indolepropionate was inversely associated with inci-
dent T2D after multivariable adjustment in combined analysis 

Figure 2 Associations between circulating tryptophan metabolite levels and incident type 2 diabetes. Data are HRs and 95% CI of incident type 
two diabetes per SD increment in metabolite levels, adjusted for age, sex, smoking, alcohol consumption, education, family income, family history of 
diabetes, self- reported hypertension and/or antihypertensive medication use, self- reported dyslipidaemia and/or lipid- lowering medication use and 
other study- specific covariates (model1); and further adjusted for body mass index and waist- to- hip ratio (model 2). Results across five studies were 
combined by fixed- effect meta- analysis.
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of all studies (all FDR <0.05; figure 2, model 1). Results were 
generally consistent across HCHS/SOL and the other four studies 
(online supplemental table S5). The observed associations were 
attenuated but remained significant after further adjusting for 
obesity measures including body mass index (BMI) and waist- 
to- hip ratio, except for quinolinate (figure 2, model 2). Further 
adjustment for blood lipids, blood pressure or physical activity 
and dietary quality did not materially change these associations 
(online supplemental table S5).

Among 2821 HCHS/SOL participants without diabetes at 
baseline, metabolites that were positively associated with T2D (ie, 
tryptophan, kynurenine, kynurenate, xanthurenate, quinolinate 
and indolelactate) showed weak- to- moderate correlations with 
each other (Spearman’s r=0.11 to 0.63) (online supplemental 
figure S2), and positive correlations with multiple cardiomet-
abolic traits, especially fasting insulin, Homeostatic Model 
Assessment for Insulin Resistance (HOMA- IR) and BMI (online 
supplemental figure S3). Indolepropionate, the only metabolite 
inversely associated with T2D, was not correlated with other 
metabolites (Spearman’s r=-0.05 to 0.06), and showed signifi-
cant, although weak, inverse correlations with BMI and a few 
other cardiometabolic traits.

Host genetics and tryptophan metabolites
Our genome- wide meta- analyses (n=up to 9290) identified 21 
independent signals at 13 loci associated with nine of 11 trypto-
phan metabolites (p<4.5×10−9) (figure 3 and online supplemental 
table S6). Genetic variants at seven loci have not been previously 
associated with the corresponding metabolites, including those 
in or near SLC22A, IDO1- IDO2, AADAT, ACMSD, ACSM2B- 
ACSM1, CDK10 and LCT. We confirmed known genetic associa-
tions at six loci.9–11 When the threshold of significance was relaxed 
to traditional genome- wide significance (p<5.0×10−8), we found 
16 additional loci associated with tryptophan metabolites (online 
supplemental table S6). Many newly identified and confirmed 
signals reside in genomic regions harbouring genes involved in host 
kynurenine pathway metabolism (eg, TDO2, IDO1- IDO2, KMO, 
AADAT and ACMSD) or transportation of tryptophan metabolites 
(eg, SLC7A5, SLC22A1 and SLC16A10).

Based on GWAS summary statistics from our meta- analysis, 
genome- wide SNP- based heritability (h2) was estimated at 13.0% 
(SE=4.9%) for serotonin, 10.7% (5.8%) for indolepropionate, 
7.4% (4.8%) for kynurenine and 0%–7.0% for other metabolites 
(online supplemental table S7). As expected, these genome- wide 

SNP- based heritability estimates were much lower than those esti-
mated using the classical twin model and were generally higher 
than those estimated based on a few genome- wide significant 
variants in previous studies (online supplemental table S7).9–11 We 
then examined potential causal relationships between three metab-
olites (serotonin, indolepropionate and kynurenine), which had 
heritability estimates meeting the criteria for LCV models,31 and 
T2D using GWAS summary statistics for metabolites in our study 
(n=up to 9290) and those for T2D obtained in the DIAGRAM (55 
005 T2D cases and 400 308 controls).32 Indolepropionate showed 
a potential causal relationship with T2D (genetic causality propor-
tion=76%, p=1.6×10−24) (online supplemental table S7).

Dietary intake and tryptophan metabolites
In 3938 HCHS/SOL participants, we observed significant associa-
tions of higher intakes of vegetables, fruits, whole grains, nuts and 
legumes, and lower intakes of refined grains and red meat, with 
higher serum indolepropionate levels (figure 4A). Intakes of some 
fibre- rich foods which were positively associated with indolepro-
pionate showed inverse associations with other indole derivatives 
and most kynurenine- pathway metabolites. Mutual adjustment for 
other food groups did not materially change the results (online 
supplemental table S8). Consistently, higher fibre intake was associ-
ated with higher indolepropionate (p=7.3×10−60), and with lower 
levels of other indole derivatives and most kynurenine- pathway 
metabolites (figure 4B). These associations were independent of 
intakes of macronutrients and tryptophan (online supplemental 
table S9). Intakes of some protein- rich foods (eg, red meat, poultry 
and dairy) and tryptophan were positively associated with serum 
levels of tryptophan, most kynurenine- pathway metabolites, and 
indoxylsulfate (figure 4A and online supplemental tables S8 and 
S9). Our mediation analysis in 2821 HCHS/SOL participants 
without diabetes at baseline indicated a significant meditating 
effect of these tryptophan metabolites on the association between 
the overall diet quality (ie, AHEI-2010) and incident T2D (propor-
tion mediated=61.5%; p=0.01).

Gut microbiota and indole derivatives
As indole pathway is carried out mostly by gut microbiota,4 
we examined associations between 92 gut microbial genera 
and serum levels of four indole derivatives in 759 HCHS/SOL 
participants. We focused on indolepropionate and indolelactate 
as these two indole derivatives were significantly associated with 

Figure 3 Manhattan plot for GWAS of circulating tryptophan metabolite levels. Meta- analyses of GWAS in up to 9290 individuals from HCHS/SOL, 
ARIC, and FHS identified 13 loci for nine tryptophan metabolites (colour indicated in inset). The significant p value threshold is 4.5×10–9 (indicated 
by a dash line). ARIC, Atherosclerosis Risk in Communities Study; FHS, Framingham Heart Study; GWAS, Genome- wide association studies; HCHS/SOL, 
Hispanic Community Health Study/Study of Latinos.
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incident T2D in our study, and identified 21 genera significantly 
associated with indolepropionate (FDR <0.05) but none asso-
ciated with indolelactate (online supplemental table S10). In 
addition, five bacterial genera were significantly associated with 
indoleacetate and 11 were associated with indoxyl sulfate.

The 21 indolepropionate- associated genera span 3 phyla 
(Firmicutes, n=16; Actinobacteria, n=3; and Bacteroidetes, 
n=2) (figure 5A). When we included all 21 genera in the linear 
regression model on indolepropionate simultaneously, asso-
ciations for these genera (especially those in Firmicutes) were 

Figure 4 Dietary intake and serum tryptophan metabolite levels. (A) Polar plot for associations of 10 major food groups with serum tryptophan 
metabolites in the HCHS/SOL. Red: positive associations (FDR <0.05); blue, inverse associations (FDR <0.05). (B) Differences (95% CI) in serum 
tryptophan metabolite levels (inverse normal transformed) associated with 1 g/1000 Kcal per day of dietary fibre intake in the HCHS/SOL. FDR, false 
discovery rate; HCHS/SOL, Hispanic Community Health Study/Study of Latinos.
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greatly attenuated or abolished, while the association between 
Bifidobacterium and indolepropionate did not change (online 
supplemental figure S4).

Fibre intake, gut microbiota and indolepropionate
In 2759 HCHS/SOL participants with diet and gut microbiome 
data, all indolepropionate- associated bacterial genera were asso-
ciated with fibre intake (15 genera showing FDR <0.05) with the 
same directions as those associations between bacterial genera 
and indolepropionate, except for Bifidobacterium (figure 5B). 

In 752 HCHS/SOL participants with diet, metabolomics and 
gut microbiome data, the association between fibre intake and 
indolepropionate was attenuated after further adjustment for 
the 20 indolepropionate- associated bacterial genera excluding 
Bifidobacterium (figure 5C). The attenuation was similar when 
including Bifidobacterium in the model. We also found a poten-
tial mediating effect of these 20 indolepropionate- associated 
bacterial genera on the association between fibre intake and indo-
lepropionate (proportion mediated=22.3%; p=0.003). These 
results suggested that these 20 indolepropionate- associated 

Figure 5 Dietary fibre intake, gut microbiota and serum indolepropionate. (A) Phylogenetic tree of taxonomic features in association with host 
serum indolepropionate levels in the HCHS/SOL. A total of 21 gut microbial genera significantly associated with serum indolepropionate (FDR 
<0.05) are indicated by solid circles. Data showing in the outer ring are effect sizes (positive, red; inverse, blue) of gut microbiota genera on serum 
indolepropionate. (B) Associations of 21 indolepropionate- assocaited gut microbial genera with dietary fibre intake in the HCHS/SOL. To show 
comparable estimates for the associations of gut microbial genera with indolepropionate and fibre intake, data are presented as Z- scores (regression 
coefficients/SEs). *FDR <0.05 for the associations between dietary fibre intake and gut microbial genera. (C) Associations between dietary fibre intake 
and serum indolepropionate levels with and without adjustment for gut microbiota (20 indolepropionate- associated gut microbial genera) in the 
HCHS/SOL. Bifidobacterium, which showed opposite associations with indolepropionate and fibre intake, was not included. FDR, false discovery rate; 
HCHS/SOL, Hispanic Community Health Study/Study of Latinos.
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bacterial genera may partially explain the association between 
fibre intake and indolepropionate, while Bifidobacterium may be 
involved in other pathways related to indolepropionate.

Host LCT, gut Bifidobacterium and indolepropionate
We then focused on gut Bifidobacterium in association with 
indolepopionate, as gut Bifidobacterium abundance has been 
related to a host functional LCT variant (rs4988235)34 35 and our 
GWAS also identified LCT as a novel locus for indolepropionate. 
LCT- rs4988235 is a known variant which determines lactase 
persistence in adulthood (AA/AG is related to lactase persistence 
and GG is related to lactase non- persistence).36 In line with 
previous evidence,34–36 the rs4988235- G allele was associated 
with lower milk intake (p=1.1×10−40; n=12 531) (figure 6A) 
and higher gut Bifidobacterium abundance (p=2.1×10−17; 
n=2368) (figure 6B) in HCHS/SOL. In our GWAS, rs4988235- G 
allele was associated with higher circulating indolepropionate 
levels (p=3.2×10−17 in meta- analysis, n=9290; p for heteroge-
neity=0.51) (p=3.2×10−12 in HCHS/SOL, n=3933; figure 6C). 
When we included both LCT- rs4988235 and Bifidobacterium in 
the multivariable linear regression model on indolepropionate 
(n=752), Bifidobacterium, but not LCT- rs4988235, was signifi-
cantly associated with indolepropionate.

Consistent with prior evidence,34 35 we found that milk intake 
was positively associated with gut Bifidobacterium abundance 
only among lactase non- persistent participants (rs4988235 GG, 
p=6.9×10−5) but not among those with lactase persistence 
(rs4988235 AG+GG; p=0.74) in HCHS/SOL (p- interac-
tion=0.001; n=2342) (figure 6D). Paralleling the LCT- milk 
interaction on gut Bifidobacterium, we identified a novel inter-
action between milk intake and LCT genotype on serum indo-
lepropionate (p interaction=0.009; n=3899). Milk intake was 
positively associated with serum indolepropionate levels only 
among lactase non- persistent individuals (p=6.3×10−5) but not 
in those with lactase persistence (p=0.92) (figure 6E). This signif-
icant interaction was replicated in ARIC (p interaction=0.001; 
n=3178) (figure 6F). LCT- rs4988235 did not show significant 
associations with intakes of dairy products low in lactose (eg, 
yoghurt, cheese) or significant interactions with other dairy 
products on gut Bifidobacterium abundance or serum indolepro-
pionate levels (data not shown).

DISCUSSION
In large- scale populations with diverse racial/ethnic back-
grounds, our study demonstrated that circulating levels of 
kynurenine- pathway metabolites, a group of host tryptophan 

Figure 6 Host LCT genotype, milk intake, gut Bifidobacterium and serum indolepropionate (A) adjusted means and 95% CIs of milk intake (servings/
day) according to LCT- rs49883235 genotypes in the HCHS/SOL. (B) Adjusted means and 95% CI of gut Bifidobacterium abundance (centre log- ratio 
transformed) according to LCT- rs49883235 genotypes in the HCHS/SOL. (C) Adjusted means and 95% CIs of serum indolepropnate levels (inverse 
normal transformed) according to LCT- rs49883235 genotypes in the HCHS/SOL. (D) Adjusted means and 95% CI of gut Bifidobacterium abundance 
(centre log- ratio transformed) according to milk intake stratified by the LCT- rs49883235 genotype in the HCHS/SOL. (E) Adjusted means and 95% CI 
of serum indolepropnate levels (inverse normal transformed) according to milk intake stratified by the LCT- rs49883235 genotype in the HCHS/SOL. 
(F) Differences and 95% CI in serum indolepropnate levels (inverse normal transformed) associated with one serving per day of milk intake according 
to the LCT- rs49883235 genotype in the HCHS/SOL and ARIC separately, and combined by meta- analysis. ARIC, Atherosclerosis Risk in Communities 
Study; HCHS/SOL, Hispanic Community Health Study/Study of Latinos.
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catabolites, including kynurenine, quinolinate, kynurenate and 
xanthurenate7 were associated with increased risk of T2D. We 
also found that higher intakes of animal- based, protein- rich 
foods and lower intakes of plant- based, fibre- rich foods were 
associated with higher circulating levels of kynurenine- pathway 
metabolites, but the associations between kynurenine- pathway 
metabolites and T2D did not change after further adjustment for 
diet quality score. This suggests that these metabolites could be 
potential mediators linking unhealthy diets with increased risk 
of T2D rather than simple biomarkers reflecting adverse dietary 
effects. Moreover, these kynurenine- pathway metabolites were 
positively correlated with obesity measures and insulin resis-
tance, and obesity may partially explain our observed associa-
tions between these metabolites and T2D. These findings are in 
line with previous evidence and support the notion that activa-
tion of the kynurenine pathway by obesity and related inflam-
mation may affect insulin signalling and contribute to increased 
risk of T2D.2 3 7 21

Indole derivatives, a group of microbial tryptophan catabo-
lites, are generally beneficial for human health.4 Higher circu-
lating indolepropionate has been associated with lower risk of 
T2D,8 12 but it was argued that this association might just reflect 
beneficial effects of dietary fibre intake on T2D.14 Our study 
documented the beneficial association between indolepropionate 
and T2D and further suggested potential causality. This is consis-
tent with the potential role of indolepropionate in antioxidation, 
anti- inflammation and amelioration of glucose metabolism.4

As little evidence suggests that indolepropionate can be derived 
from fibre fermentation, the strong positive association between 
fibre intake and circulating indolepropionate is intriguing,8 12 14 
but may be explained, in part, by a potential novel pathway 
suggested by our integrative analysis. Tryptophan is the sole 
source for indolepropionate production which is suggested as 
completely gut microbiota- dependent in mice,37 involving bacte-
rial species mostly in the Clostridium genus.38 Consistently, a 
majority of identified gut bacterial genera in our study, including 
Clostridium,38 showed positive associations with indolepropio-
nate. Most of these genera are members of Firmicutes, a phylum 
that includes many species use dietary fibre as main energy 
source.39 Catabolism of aromatic amino acids including tryp-
tophan has been demonstrated in Firmicutes but not in other 
phyla.38 We also found several indolepropionate- bacterial genera 
in other phyla which might be related to fibre intake, although it 
is unknown whether they are involved in the indolepropionate 
production. For example, Cellulomonas, a genus in Actinobac-
teria, is known to degrade cellulose,40 a type of fibre found in 
plant cell walls. These findings suggest that higher fibre intake 
may increase populations of fibre- using bacteria,39 some of 
which may have the capability to produce indolepropionate or 
its substrates from tryptophan,4 thus shifting host tryptophan- 
to- kynurenine catabolism more towards gut microbial indole-
propionate production. However, it should be noted that the 
association between fibre intake and indolepropionate was 
not fully explained by the identified bacteria in our study. Gut 
bacteria involved in this pathway might not be fully captured 
by our faecal metagenomics. A notable limitation of our study 
is that the assessments of diet and serum metabolites preceded 
faecal sample collection by a median of 7 years. Although the 
human gut microbiome was found to be notably stable over a 
long period,41 the 7- year time lag might attenuate the associ-
ations of the gut microbiota with diet and metabolites in this 
study. It is possible that we would observe stronger associations 
of gut microbiota with fibre intake and serum indolepropionate 
with concurrently collected data. Nevertheless, our findings 

suggest indolepropionate production, in addition to short- chain 
fatty acid production,39 as a potential novel microbial metab-
olite pathway for beneficial effects of dietary fibre on human 
cardiometabolic health.

Another novel finding of this study is that a lactase persistence- 
determining variant at LCT was associated with circulating indo-
lepropionate, through an apparent interaction with milk intake. 
This might be related to an indolepropionate- associated gut 
bacterium identified in this study, Bifidobacterium, which has 
been associated with host LCT and milk intake.34 35 Compared 
with lactase persistent individuals, lactase non- persistent indi-
viduals cannot hydrolyze lactose after consuming milk and thus 
have more lactose in the gut as an energy source for Bifidobac-
terium growth,34 35 which may then contribute to higher indole-
propionate production. Indeed, although it is unknown whether 
Bifidobacterium has the capability to produce indolepropionate, 
many strains in the Bifidobacterium genus have been found to 
produce indolelactate,42 43 a substrate for indolepropionate. 
Moreover, both human44–47 and animal studies48 suggested a 
potential protective role of gut Bifidobacterium in T2D. Taken 
together, our observations extend the previously identified host 
gene–diet interaction on gut microbiota34 35 to microbiota- 
produced metabolites in host circulation, and suggest microbial 
indole derivative production as a potential mechanism through 
which gut Bifidobacterium is associated with T2D. Due to limita-
tions of shallow shotgun sequencing data,26 we did not examine 
Bifidobacterium species or strains, or functional features for 
indole derivative production which need to be clarified in future 
studies.

The other two indole derivatives, indoleacetate and indolelac-
tate, have been shown to act through aryl hydrocarbon receptor 
activation,4 which could reduce inflammation and insulin resis-
tance.5 However, we did not find beneficial associations of these 
two metabolites with T2D. In contrast, indolelactate was asso-
ciated with increased risk of T2D in our study, and inconsis-
tent associations between indolelactate and insulin resistance 
were also reported in previous studies.49 50 Interestingly, we 
found that serum indolelactate was more closely correlated with 
kynurenine- pathway metabolites than other indole derivatives, 
and host factors (eg, genetic variants in KYAT1,10 a gene involved 
in host tryptophan- kynurenine metabolism) rather than gut 
microbial factors were associated with circulating indolelactate 
levels. Further studies are warranted to clarify the relationship 
between circulating and faecal indole derivatives and their asso-
ciations with T2D.

In summary, circulating tryptophan, several kynurenine- 
pathway metabolites and indolelactate showed adverse asso-
ciations with incident T2D, while indolepropionate showed a 
beneficial association with incident T2D. We identified multiple 
host genetic, dietary and gut microbial factors associated with 
these metabolites. In particular, higher fibre intake and milk 
intake (only among genetically lactase non- persistent individ-
uals) were associated with higher circulating levels of indolepro-
pionate possibly through the host–microbial cross- talk shifting 
tryptophan metabolism towards gut microbial indolepropionate 
production. It should be noted that our study is unable to make 
causal inference due to its observational nature, although our 
findings may have strong biological plausibility. These findings 
contribute to our understanding of the host–microbial cross- 
talk in tryptophan metabolism and its implications in human 
metabolic health and disease, and may help to identify high- risk 
individuals based on circulating metabolite profiles for targeted 
interventions through dietary intervention and gut microbiota 
modification.
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