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Gut microbiota

Clusters of breads, legumes, fish and nuts show a consistent 
negative association with several pro-inflammatory pathways
A food cluster comprising breads and legumes, and a cluster of 
fish and nuts, were negatively associated with groups of path-
ways involved in the synthesis of growth factors, endotoxins 
and cell wall components (P2, P9, P22, online supplemental 
table 4, figure  2A). Moreover, we observed a negative associ-
ation between the fish and nuts cluster and pathways for the 
synthesis of L-tyrosine, L-phenylalanine, terpenoids, quinones 
and fatty acids, a profile predictive of E. coli (P25, P24, P20, P5, 
figure 2A). The bread and legumes cluster was associated with a 
lower abundance of an E. coli, Bacteroides fragilis and Parabacte-
roides cluster (S13: FDR=0.015, coef=−0.066, online supple-
mental table 5, figure 2B). Conversely, the cluster of breads and 
legumes, and the cluster of fish and nuts, were associated with 
a higher abundance of pathways involved in the synthesis of 
acetate and the urea cycle for detoxification of ammonium (P4, 
figure 2A).

Consumption of nuts, oily fish, fruit, vegetables and cereals is linked 
to a higher abundance of SCFA-producers
Also individually, these food items were related to several 
commensals capable of SCFA production (figure  3). For 
example, Faecalibacterium prausnitzii abundance was posi-
tively associated with consumption of fruits (FDR=0.005, 
coef=0.1), red wine (FDR=0.0003, coef=0.441) and oily fish 
(FDR=0.037, coef=1.695), but showed a negative associa-
tion with high-sugar foods (soft drinks: FDR=0.028, coef= 
-0.131; sweets: FDR=0.039, coef= -0.669) (figure 3A). Rose-
buria hominis abundance was positively associated with nuts 
(FDR=3.80×10–05, coef=0.629), oily fish (FDR=0.0002, 
coef=1.057), vegetables (FDR=0.007, coef=0.079), legumes 
(FDR=0.029, coef=0.402), cereals (FDR=0.014, coef=0.485) 
and plant protein (FDR=1.17×10–05, coef=3.567) (figure 3B). 
These bacteria are known to have anti-inflammatory effects and 
provide protection of the intestinal mucosa through fermentation 

of fibre and pectins to acetate and butyrate.13 Details of each 
taxon and pathway, including statistics for each cohort, as well 
as the meta-analysis, are provided in online supplemental tables 
7 and 8.

Red wine is associated with a higher abundance of several 
acetate and butyrate producers but with a lower Bifidobacterium 
abundance
A cluster of acetate and butyrate producing species (S1) was 
positively associated with a cluster of different types of wine 
(FDR=0.002, coef=0.036, figure  2B). Specifically, red wine 
was linked to higher abundances of Faecalibacterium praus-
nitzii, Eubacterium hallii, Ruminococcus obeum, Rumino-
coccus lactaris, Anaerostipes hadrus and Alistipes putredinis (all 
FDR<0.05, p-Cochran’s-Q>0.05, online supplemental table 7). 
Conversely, red wine intake showed a negative association with 
Bifidobacterium abundance, a SCFA-synthesising commensal 
(FDR=0.007, coef=−0.933).

Alcohol and sugar intake is associated with a higher abundance of 
quinone synthesis pathways
Consumption of spirits (pure grain-based alcohol) was associ-
ated with a higher abundance of quinone synthesis pathways, 
that we previously reported to be enriched in IBD (PWY-5840, 
PWY-5850, PWY-5860, PWY-5862, online supplemental table 
8),22 although after correcting for metformin use, this was not 
nominally significant anymore (FDR=0.094). Moreover, we 
observed a negative association of a pyruvate to propanoate 
fermentation pathway with total alcohol intake in energy-% 
(P108-PWY, FDR=0.0103, coef=−0.067). In contrast to 
alcohol and sugar, plant protein intake was negatively associated 
with quinone synthesis (PWY-5862, PWY-5896, online supple-
mental table 8, figure 4A).

Figure 2  Consistent associations of dietary patterns with clusters of pathways (A) and species (B) in the cross-disease meta-analysis. Forest plot 
showing consistent results between dietary patterns and microbial clusters in a cross-disease meta-analysis of 1425 individuals spanning four cohorts 
(FDRMeta<0.05, p-Cochran’s-Q>0.05). Dots indicate pooled results of the meta-analysis; black lines indicate CIs. Dot size indicates the significance 
of the association (FDR-corrected p value). X-axis represents coefficients. Unsupervised hierarchical clustering was performed on dietary intake, 
species and pathway abundance, using squared Euclidean and Bray-Curtis distance. In each cohort, a multivariate linear model of food clusters 
versus microbial clusters was constructed, adding age, sex, sequencing depth and caloric intake as covariates. An inverse-variance meta-analysis 
was conducted on results obtained per cohort, followed by multiple testing correction and a Cochran’s Q test. AA, amino acid; ECA, enterobacterial 
common antigen; FA, fatty acid; FDR, false discovery rate; ferment, fermentation; LPS,lipopolysaccharides; spp, species.
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Coffee intake is associated with a higher Oscillibacter abundance
Coffee consumption was significantly associated with Oscil-
libacter abundance (FDR=8.37×10–05, coef=0.022), hetero-
lactic fermentation and various glycolytic pathways (PWY-6969, 
FUC-RHAMCAT-PWY, P122-PWY, online supplemental  
tables 7 and 8).

Lactic acid bacteria and fermentation to butanediol are consistently 
associated with consumption of fermented dairy
Consumption of fermented dairy like buttermilk and yoghurt 
showed strong associations with lactic bacteria, as previously 
shown,26 as well as with the fermentation of pyruvate to butane-
diol (P125-PWY) and peptidoglycan synthesis (PWY-6471) 
(online supplemental tables 7 and 8).

Plant-based food consumption is associated with higher synthesis 
and conversion of essential nutrients by the gut microbiota
Total intake of plant-derived protein was positively associated 
with pathways involved in the synthesis of SCFA (P108-PWY, 
P162-PWY), thiamin (PWY-6897), biotin (PWY-5005), flavin 
(PWY-6168), vitamin B6 (PWY0-845; PYRIDOXSYN-PWY) 
and L-ornithine (ARGININE-SYN4-PWY), and the degradation 
of sugar derivates (PWY-6531, HEXITOLDEGSUPER-PWY) 
(figure 4A). Participants consuming higher amounts of potatoes 
showed a higher abundance of starch degrading pathways (PWY-
6731: FDR=0.038, coef=0.003).

Plant-derived and animal-derived foods and nutrients show inverse 
taxonomical associations
Already at the higher taxonomic levels we observed oppo-
site relations of animal-based and plant-based foods and 
nutrients. While total intake of animal protein and fat was 
associated with a higher Firmicutes abundance, a negative asso-
ciation was found for plant protein and carbohydrate intake 
(FDR=1.30×10-05, coef=3.646; FDR=0.042, coef=2.936; 
FDR=0.003, coef=−6.081; FDR=4.67×10-07, coef=−1.735, 
respectively). Firmicutes-dominated communities have been 
observed in omnivores of the general population.19 While 
plant protein and bread intake were consistently linked to a 
higher Bifidobacterium abundance (FDR=0.049, coef=4.982; 
FDR=0.004, coef=0.815, figure  4B), total fat and animal 
protein intake, cheese and fish were associated with a lower 
Bifidobacterium abundance (animal protein: FDR=1.30×10–

05, coef=−4.113), except for Bifidobacterium dentium. 
Bifidobacterium dentium, a dominant species of the upper 
gastrointestinal (GI) tract, showed a positive association with 
consumption of meat, animal protein and butter (FDR=0.001; 
FDR=0.048, FDR=1.91×10–05).

Furthermore, we observed higher abundances of Erysipel-
otrichaceae, Ruminococcus species of the Blautia genus and 
Streptococcus species with animal protein, while the opposite 
direction was found for plant protein intake (online supple-
mental table 7, figure 4B).
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Figure 3  Dietary factors associated with Faecalibacterium prausnitzii (A) and Roseburia (B) relative abundance in the meta-analysis. 
Heatmap showing significant and consistent results of the cross-disease meta-analysis between individual foods and relative abundance of (A) 
Faecalibacterium prausnitzii and (B) Roseburia sp (FDR<0.05, p-Cochran’s-Q>0.05). Dietary intake was assessed by Food Frequency Questionnaires. 
Energy adjustment was performed by the nutrient density method. For each food item, we constructed a multivariate linear model of the food intake 
versus taxa and pathways, adding age, sex and sequencing depth as covariates. Association analyses were performed per cohort, followed by an 
inverse-variance meta-analysis, multiple testing correction and a Cochran’s Q test. carb; carbohydrates; CD, Crohn’s disease; en-%, energy-per cent; 
FDR, false discovery rate; g/d, gram per day; IBS, irritable bowel syndrome; nut_d, nuts added to dinner; sp, species; UC, ulcerative colitis. Red, positive 
association; blue, negative association. Colour density indicates significance of the association (FDR-corrected p value).
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Fast food consumption is associated with higher abundances of 
Blautia, Lachnospiraceae bacteria and Clostridium bolteae
We observed significant positive associations between the 
consumption of fast food and savoury snacks and the abundance 
of Blautia, Lachnospiraceae bacteria and Clostridium bolteae 
in line with previous reports.30 A fast food cluster consisting of 
meats, french fries, mayonnaise and soft drinks, showed a positive 
association with a cluster of Clostridium bolteae, Coprobacillus 
and Lachnospiraceae bacteria (1_4_56FAA and 2_1_58FAA) 
(FDR=0.040, coef=0.057, figure  2B). Moreover, the cluster 
of fast food showed a positive association with a Ruminococcus 
gnavus and Lachnospiraceae bacterium 1_1_57FAA cluster 
in IBS and HCs, which was not significant in CD and UC in 
the meta-analysis (FDRHC=4.99×10–5, FDRIBS=3.22×10–5, 
FDRCD=0.490, FDRUC=0.761, FDRmeta=4.69×10–6, coef-

meta=0.128, p-Cochran’s-Q=0.02). This finding reflects a differ-
ence in the effect size, with Ruminococcus gnavus being already 
enriched in CD and UC as compared with controls.31 Moreover, 
fast food meals and savoury snacks were positively associated 
with Parabacteroides johnsonii, Lactobacillus sakei, Lachnospira-
ceae bacterium 1_1_57FAA and the Ruminococcus genus across 
all cohorts (online supplemental table 7).

Per cohort analysis also reveals disease-specific results
While the primary purpose of this study was to perform a meta-
analysis across different conditions, heterogeneity tests and 
linear models performed separately per cohort also revealed 
disease-specific results for species that are enriched in IBD or IBS 

compared with controls22 23 (online supplemental tables 4–8). We 
observed a positive association of the abundance of bile tolerant 
bacteria such as Sutterella wadsworthensis, Bilophila, Bacteroides 
and Alistipes spp. with the consumption of fast food or ready 
meals in CD, UC and IBS. This association was not statistically 
significant in the HC-group in which these taxa have a lower 
abundance, but showed the same directionality (coefficient) 
(online supplemental tables 7). In IBS, consumption of butter-
milk, bread and cereals was associated with a lower abundance 
of hydrogen producing Dorea spp and with a higher Bifidobac-
terium abundance (all FDRIBS<0.05). In UC, Methanobacter 
smithii abundance was positively associated with whole milk, 
butter, sauces, sweets and alcoholic drinks (all FDRUC<0.05). In 
CD, Bacteroides vulgatus abundance was associated with milk, 
animal protein and fat intake (FDRCD=0.002, coef =1.053; 
FDRCD=0.009, coef =4.561, FDRCD=0.01, coef =2.078).

Dietary patterns are associated with intestinal inflammatory 
markers
Lastly, we observed significant positive associations of Fcal 
with the cluster comprised of fast food (FDR=4.14×10–4, 
coef=0.242) and a cluster comprised of high-fat meat, potatoes 
and gravy (FDR=0.003, coef=0.218), that were consistent in 
the meta-analysis. By contrast, we saw a negative association of 
Fcal with the cluster comprised of fish and nuts (FDR=0.038, 
coef=−0.102) and of CgA with a cluster of breads and legumes 
(FDR=0.005, coef=−2.484) supporting the pro-inflammatory 
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Figure 4  Microbial metabolic pathways (A) and taxa (B) associated with plant protein intake in the meta-analysis. Heatmap showing significant 
and consistent results of the cross-disease meta-analysis between plant protein intake and the relative abundance of (A) metabolic pathways and 
(B) taxonomical abundance of the gut microbiome (FDR<0.05, p-Cochran’s-Q>0.05). Dietary intake was assessed by Food Frequency Questionnaires. 
For each food item, we constructed a multivariate linear model of the food intake versus taxa and pathways, adding age, sex and sequencing depth 
as covariates. Association analyses were performed per cohort, followed by an inverse-variance meta-analysis, multiple testing correction and a 
Cochran’s Q test. CD, Crohn’s disease; FDR, false discovery rate; IBS, irritable bowel syndrome; UC, ulcerative colitis. Red, positive association; blue, 
negative association. Colour density indicates significance of the association (FDR-corrected p value).
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and anti-inflammatory role of the microbial features that were 
associated with these foods (online supplemental tables 6).

DISCUSSION
In this study we have shown how habitual dietary choices can 
impact the human gut ecosystem and its inflammatory poten-
tial by studying the relations between unsupervised dietary 
patterns, intestinal inflammatory markers and gut microbial 
composition and function across four cohorts. We identi-
fied significant associations that replicate across patients with 
Crohn’s disease, ulcerative colitis, irritable bowel syndrome and 
the general population, implying a potential for microbiome-
targeted dietary strategies to alleviate and prevent intestinal 
inflammation.

We showed that dietary patterns comprising legumes, breads, 
fish and nuts are associated with a lower abundance of clusters 
of opportunistic bacteria, pathways for the synthesis of endo-
toxins and inflammatory markers in stool. Higher proportions 
of these bacteria and pathways have been implicated in IBD and 
colorectal cancer combined with inflammation through their 
metabolites such as LPS.22 32 Conversely, we observed higher 
abundances of commensals such as Roseburia, Faecalibacterium 
and Eubacterium spp with the consumption of nuts, oily fish, 
fruits, vegetables, cereals and red wine across all cohorts. These 
bacteria are known for their anti-inflammatory effects in the 
intestine through fermentation of fibre to SCFAs.13 A dietary 
pattern that is traditionally high in these foods is the Mediter-
ranean diet which has been linked to a lower IBD-risk in retro-
spective studies.33

Accumulating literature demonstrates an anti-inflammatory 
role of polyphenol-rich foods such as coffee, tea, red wine 
and fruit. We observed a higher Oscillibacter abundance and 
a lower abundance of pro-inflammatory pathways with coffee 
consumption. Increases in Oscillibacter have been shown on 
administration of tea-phenols or berry-phenols at the expense 
of potentially pathogenic species in mice.34 Moreover, we saw 
positive associations of red wine intake with several acetate and 
butyrate producers. Red wine polyphenols have been shown 
to increase Faecalibacterium prausnitzii and Roseburia hominis 
while reducing E. coli and Enterobacter cloacae abundance, 
C-reactive protein (CRP) and cholesterol levels in healthy and 
obese individuals.35 36 In contrast, total alcohol intake and 
spirits were associated with pro-inflammatory pathways in our 
study. Alcohol-induced reduction of Bifidobacteria and higher 
endotoxin production has been suggested to increase intestinal 
inflammation in patients with GI cancers and liver disease.37 
Together, these findings support the earlier finding that 
moderate red wine intake is linked to higher microbial diversity, 
a parameter of gut health,26 38 while also showing that alcohol is 
a limiting factor, especially in the context of intestinal inflamma-
tion. Red wine polyphenol extracts may have a role to potentiate 
SCFA-producers and to promote beneficial actions of probiotics 
through a host-microbe mutualism.35 36

We found a consistent association of plant protein intake 
with several fermentation pathways and the synthesis of anti-
inflammatory nutrients and L-ornithine amino acid. Concor-
dantly, a recent study in vegetarians showed an enrichment of 
pathways related to carbohydrate, amino acid, cofactor and 
vitamin metabolism.39 Animal models have demonstrated that 
nutrients produced by microbial metabolism of plant polysac-
charides downregulate the expression of pro-inflammatory cyto-
kines,40 suggesting an anti-inflammatory potential of plant-based 
diets through gut microbial metabolism.

We consistently observed inverse taxonomical associations of 
animal and plant foods across all cohorts. While animal protein 
intake was associated with lower Bifidobacterium abundance, the 
opposite direction was found for plant protein. A lower Bifido-
bacterium abundance has been observed in omnivores compared 
with vegans.15 30 Here, we replicate this link also in patients with 
IBD and IBS, in whom Bifidobacteria are generally depleted. An 
intervention with glycated pea protein in mice has been shown 
to increase Bifidobacterium and Lactobacillus abundance at the 
expense of Bacteroides fragilis and Clostridium perfringens,41 
suggesting a specific role of plant protein besides other plant-
derived nutrients to modulate the gut microbiome.

Animal protein dominated diets also tend to include higher 
amounts of saturated fats, which are impactful on the micro-
biome themselves.5 42 We here observed a positive association 
of the total fat intake and meat consumption with species that 
are dominant in the upper GI tract and oral cavity, while the 
opposite direction was found for plant-derived foods. Higher 
colonisation of these bacteria in the intestine has been reported 
in IBD, liver cirrhosis, colon cancer32 43 as well as several IMIDs 
such as arthritis and multiple sclerosis2 and has been linked to 
high-fat diets.30 Microbial carbohydrate fermentation normally 
creates a mildly acidic environment that inhibits overgrowth of 
these bacteria. A switch from a normal fat/carbohydrate ratio 
to a high-fat diet can impact the gut microbial composition and 
colonic pH. While there are many disease-related factors that 
influence the intestinal pH, our findings tentatively suggest 
that a high-fat omnivore diet affects the intestinal pH, further 
favouring colonisation of these bacteria in the intestine, as 
opposed to plant-dominated diets.

By contrast, fish showed consistent positive associations 
with Roseburia hominis and Faecalibacterium prausnitzii in 
our study. Fish is high in omega-3 polyunsaturated fatty acids 
(n-3 PUFA). Administration of n-3 PUFA in animal models has 
induced a decrease in pathobionts and pro-inflammatory metab-
olites and increased anti-inflammatory symbionts.5 Conversely, 
high-fat diets rich in n-6 PUFAs have depleted SCFA-producers 
and increased CRP levels in humans.42 These findings imply a 
role for optimised n-6/n-3 fatty acid ratios for gut microbiome 
targeted diets.

Finally, we have shown positive associations of fast food, 
processed meat, soft drinks and sugar with Fcal and the abun-
dance of Clostridium bolteae, Ruminococcus obeum, Rumino-
coccus gnavus and Blautia hydrogenotrophica, Firmicutes that 
increase energy harvesting from the diet and are implicated in 
obesity and IMIDs.2 44 Functional studies consistently demon-
strated an impact of food processing on the gut microbiome, 
leading to gut permeability and intestinal inflammation through 
an increase in mucolytic bacteria like Ruminococcus gnavus, 
Akkermansia muciniphila and Proteobacteria, production of 
endotoxins and induction of TH17 cells.5–11 Especially in the 
combination with a low fibre intake, these bacteria turn to the 
mucus layer, leading to an erosion of the gut barrier.5 A high 
consumption of sugar and soft drinks combined with a low vege-
table intake has already been linked to IBD.7 We observed higher 
Fcal levels with the consumption of a high-sugar and high-fat 
diet, while the opposite was seen for plant-based foods. While 
this observation may not have a clinical benefit yet in the setting 
of IBS or HC with pre-clinical levels of Fcal, it implies a role for 
dietary strategies already at the public health level. Our findings 
suggest the gut microbiome as a link between diet and disease 
risk.

Our study has several limitations related to its cross-sectional 
nature and the complex interplay between diet and the gut 
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microbiome. First, the cross-sectional nature of this study cannot 
identify causality in the observed associations. Second, while the 
use of whole shot-gun metagenomic sequencing allowed us to 
explore predicted metabolic profiles, further studies using faecal 
metabolomics and in vitro studies will be needed to confirm an 
increase or decrease in certain microbial functions and metab-
olites. Third, the time that is needed to elicit a lasting response 
of gut microbiota to dietary changes has not been well defined. 
Studies suggest that long-term habitual diet has a larger impact 
on a ‘core’ gut microbiome composition and function17–19 while 
short-term interventions have temporary effects.15 16 45 Longitu-
dinal studies using high-resolution multi-omics data and dietary 
interventions with long-term follow-up will help us determine 
the time-dynamics of the gut microbiome in future, considering 
day-to-day variations and intestinal transit.29

CONCLUSIONS
Despite these limitations, we were able to derive dietary patterns 
that consistently correlate with groups of bacteria and func-
tions known to infer mucosal protection and anti-inflammatory 
effects. We believe that the diet-microbiota associations that we 
described in this manuscript are robust: the results are consis-
tent in the different cohorts and also remained significant after 
adjusting for additional cohort-specific factors such as medi-
cation usage. The findings suggest shared responses of the gut 
microbiota to the diet across patients with CD, UC, IBS and the 

general population that may be relevant to other disease contexts 
in which inflammation, gut microbial changes and nutrition are 
a common thread.3 46 A decrease in the here identified bacteria 
and their anti-inflammatory functions has already been identified 
in numerous inflammatory diseases, including cancer, athero-
sclerosis, obesity, non-alcoholic steatohepatitis, liver cirrhosis 
and IBD.3 4 22 32 Long-term diets enriched in legumes, vegetables, 
fruits and nuts; a higher intake of plant over animal foods with a 
preference for low-fat fermented dairy and fish; while avoiding 
strong alcoholic drinks, processed high-fat meat and soft drinks, 
have a potential to prevent intestinal inflammatory processes via 
the gut microbiome (table 2). Poor adherence to these principles 
has already been linked to an increased risk of IBD.33 47 48 We 
provide support for the idea that the diet can be a significant 
complementary therapeutic strategy through the modulation of 
the gut microbiome.3 49 For example, pre-clinical evidence shows 
that SCFA-producers such as Bifidobacterium species aid in invig-
orating a tumour specific T-cell response, raising the efficacy of 
cancer immunotherapy.50 It can be speculated that consumption 
of plant-based diets increases the abundance of these gut micro-
biota, further augmenting treatment responses.
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Table 2  Overview of diet-gut microbiome associations consistent across cohorts in this study and their pro-inflammatory or anti-inflammatory role

Findings in this study Supporting studies

Taxa Diet (↑) Diet (↓) Pro-inflammatory or anti-inflammatory role References

Bifidobacterium spp Plant protein, carbohydrates, 
bread, fruit

Protein, animal protein, fat, fish, 
savoury snacks, red wine, butter

SCFA synthesis (acetate); linked to dense 
mucosal barrier, reduced LPS levels and 
raised efficacy of cancer immunotherapy; 
depleted in IBD, IBS, obesity

13 15 22 35 41 51 52

Lactococcus lactis, Lactobacillus 
delbrueckii

Buttermilk, cluster of fermented 
dairy

No negative associations SCFA and thiamine synthesis, anti-cancer 
activities

13 26 53

Eubacterium spp Plant protein, cereals, fruit, red 
wine

Carbohydrates, non-alcoholic 
drinks, soft drinks

SCFA (butyrate) and phenolic acid synthesis; 
depleted in IBD

13 22 35

Roseburia spp Fish, nuts, vegetables, plant 
protein, cereals, tea, legumes, 
vegetables, fruit

Total kcal, sugar, savoury snacks, 
meat, gravy, sweetened milk 
drinks

SCFA synthesis (butyrate) and anti-
inflammatory effects; depleted in IBD

13 19 22 54

Faecalibacterium prausnitzii Red wine, legumes, fruit, lean 
beef, fish, nuts, fat

Carbohydrates soft drinks, 
sweets, syrup

SCFA synthesis (butyrate) and anti-
inflammatory effects; depleted in IBD

13 19 22 35 55

(phylum) Firmicutes and clusters 
of Ruminococcus gnavus, 
Lachnospiraceae bacteria, 
Clostridium boltea, Coprobacillus

Protein, animal protein, fat 
intake, cheese cluster of fast 
food and soft drinks

Plant protein, carbohydrates, 
bread

Enriched in obesity, increased energy 
harvesting capacity

19 44

Bacteroides fragilis Cheese, custard Cluster of breads and legumes Opportunistic pathogen with increased 
abundance in IBD and colorectal cancer, 
raised LPS levels

22 32 41

Escherichia coli No positive associations in the 
meta-analysis

Cluster of breads and legumes Increased abundance in IBD and colorectal 
cancer, raised LPS levels

18 22 32

(family) Erysipelotrichaceae Animal protein, soft drinks, syrup Plant protein Pro-inflammatory; associated with 
colorectal cancer, hypercholesterolaemia, 
and obesity.

56 57

Streptococcus spp Protein, animal protein, fat, 
cheese, yoghurt drink, custard

Plant protein, nuts Increased in IBD, alcoholism, liver cirrhosis, 
primary sclerosing cholangitis, colon 
cancer and IMIDs such as MS, ankylosing 
spondylitis and arthritis

2 22 32 43 58

Blautia spp Animal protein, alcohol, meat, 
cheese, soft drinks, fast food 
pattern (R. gnavus cluster)

Plant protein, carbohydrates, 
fruit, bread

Increased in IBD, MS, ankylosing spondylitis 
and arthritis

2 22 42

Diet (↑) positive relationship; Diet (↓) negative relationship.
IMIDs, immune-mediated inflammatory diseases; kcal, caloric intake; LPS, lipopolysaccharides; MS, multiple sclerosis; ref, reference; SCFA, short-chain fatty acid; spp, species.
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