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BACKGROUND & AIMS: In celiac disease (CeD), gluten induces
immune activation, leading to enteropathy. TAK-101, gluten
protein (gliadin) encapsulated in negatively charged poly(DL-
lactide-co-glycolic acid) nanoparticles, is designed to induce
gluten-specific tolerance. METHODS: TAK-101 was evaluated
in phase 1 dose escalation safety and phase 2a double-blind,
randomized, placebo-controlled studies. Primary endpoints
included pharmacokinetics, safety, and tolerability of TAK-101
(phase 1) and change from baseline in circulating gliadin-
specific interferon-g–producing cells at day 6 of gluten chal-
lenge, in patients with CeD (phase 2a). Secondary endpoints in
the phase 2a study included changes from baseline in enter-
opathy (villus height to crypt depth ratio [Vh:Cd]), and fre-
quency of intestinal intraepithelial lymphocytes and peripheral
gut-homing T cells. RESULTS: In phase 2a, 33 randomized
patients completed the 14-day gluten challenge. TAK-101
induced an 88% reduction in change from baseline in
FLA 5.6.0 DTD � YGAST64205_proof
interferon-g spot-forming units vs placebo (2.01 vs 17.58, P ¼
.006). Vh:Cd deteriorated in the placebo group (�0.63, P ¼
.002), but not in the TAK-101 group (�0.18, P ¼ .110), although
the intergroup change from baseline was not significant (P ¼
.08). Intraepithelial lymphocytes numbers remained equal.
TAK-101 reduced changes in circulating a4b7þCD4þ (0.26 vs
1.05, P ¼ .032), aEb7þCD8þ (0.69 vs 3.64, P ¼ .003), and gd

(0.15 vs 1.59, P ¼ .010) effector memory T cells. TAK-101 (up
to 8 mg/kg) induced no clinically meaningful changes in vital
signs or routine clinical laboratory evaluations. No serious
adverse events occurred. CONCLUSIONS: TAK-101 was well
tolerated and prevented gluten-induced immune activation in
CeD. The findings from the present clinical trial suggest that
antigen-specific tolerance was induced and represent a novel
approach translatable to other immune-mediated diseases.
ClinicalTrials.gov identifiers: NCT03486990 and
NCT03738475.
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Celiac disease is a well-characterized immune-mediated
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Keywords: Gliadin; Antigen-specific Immune Tolerance.

eliac disease (CeD) is an immune-mediated disorder
disorder incited by gliadin, a component of gluten. TAK-
101, gliadin encapsulated in nanoparticles, is under
development as an antigen-specific immune tolerance
therapy for celiac disease.

NEW FINDINGS

TAK-101 was well tolerated in patients with celiac disease
undergoing oral gluten challenge, and prevented immune
activation and small intestinal mucosal injury, with no
evidence of systemic immune suppression.

LIMITATIONS

These small phase 1 and 2 studies were of limited
duration. Longer-term effects of TAK-101 on celiac
disease symptoms were not fully evaluated.

IMPACT

TAK-101 prevented gluten-induced immune activation in
CeD. This is the first trial demonstrating antigen-specific
immune tolerance in autoimmune disease, which
represent a novel approach translatable to other
immune-mediated diseases.

* Authors share co-first authorship.

Abbreviations used in this paper: AE, adverse event; Ag, antigen; APC,
antigen-presenting cell; CeD, celiac disease; CyTOF, time-of-flight mass
cytometry; ELISpot, enzyme-linked immunospot; GFD, gluten-free diet;
HLA, human leukocyte antigen; IEL, intraepithelial lymphocyte; IFN,
interferon; IL, interleukin; MARCO, macrophage receptor with collagenous
structure; PBMC, peripheral blood mononuclear cell; PK, pharmacoki-
netics; PLGA, poly(DL-lactide-co-glycolide); SFU, spot-forming unit; Th, T
helper cell; Treg, regulatory T cell; Vh:Cd, villus height to crypt depth ratio.
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Ctriggered by gluten ingestion in individuals
expressing human leukocyte antigen (HLA)-DQ2 or HLA-
DQ8, resulting in damage to the small intestine.1 CeD is
one of the most common autoimmune disorders, affecting
more than 1% of the global population.2

Ingestion of prolamin proteins, primarily gliadin, results
in an abnormal T-cell response in patients with CeD. After
gluten exposure, gliadin is processed and presented to CD4þ

T cells, initiating an inflammatory reaction characterized
by CD4þ T cell production of interferon (IFN)-g and the
activation of CD8þ T cells and gd T cells that express
the gut-homing or retention integrins a4b7 or aEb7.3–5 The
activated CD8þ T cells increase in the small intestine
epithelium with gluten exposure and are thought to mediate
intestinal damage.1,6–8

Manifestations of CeD are diverse, and include gastro-
intestinal symptoms and extraintestinal disorders,
including anemia, osteoporosis, neurologic disease, and
dermatitis herpetiformis.9 No medications are currently
approved for the treatment of CeD, and the only available
management strategy is a gluten-free diet (GFD). Diet
modification alone is inadequate to achieve clinical and
histologic remission in many patients owing to heteroge-
neous sensitivity to gluten and frequent inadvertent gluten
exposure from widespread contamination of food.10–12 In
addition, the requirement for lifelong adherence to a strict
GFD places a high burden on both patients and caregivers.
There is therefore a critical unmet need for effective
nondietary therapies for CeD.

Induction of gliadin-specific immune tolerance is a
promising therapeutic solution for CeD that targets mecha-
nisms initiating disease pathology instead of mitigating the
effects of gluten exposure. Tolerogenic inhibition of specific
immune responses is a highly sought-after therapeutic goal
for immune-mediated diseases, including autoimmunity,
allergy, and transplant rejection. Negatively charged pol-
y(DL-lactide-co-glycolide) (PLGA)-antigen (Ag) nanoparticles
have been developed to deliver specific antigens that induce
tolerogenic inhibition via a non-inflammatory process. In
rodents, PLGA-Ag nanoparticle-induced tolerance to model
antigen is dependent on particle uptake via the macrophage
receptor with collagenous structure (MARCO) scavenger
receptor by tolerogenic antigen-presenting cells (APCs) in
the splenic marginal zone and liver.12,13 These APCs lead to
anergy within Ag-specific effector T cells and activate pop-
ulations of Ag-specific regulatory T cells.13–16 This approach
has been shown to be effective in mouse experimental
autoimmune encephalomyelitis, murine type 1 diabetes
induced by adoptive transfer of activated diabetogenic
epitope-specific CD4þ or CD8þ transgenic T cells, and a
mouse model of CeD induced by transfer of gliadin-specific
T cells.15,17–22 TAK-101 (formerly TIMP-GLIA), is composed
of gliadin encapsulated in PLGA-Ag nanoparticles. We
posited that TAK-101 may induce immune tolerance suffi-
cient for the treatment of CeD.
FLA 5.6.0 DTD � YGAST64205_proof
Here, we present data for the safety, tolerability,
pharmacokinetics (PK), and efficacy of TAK-101 from the
induction of gliadin-specific T-cell tolerance in patients
with biopsy-confirmed CeD in phase 1 and phase 2a
studies.
Methods
Trial Design

These studies complied with the ethical principles of Good
Clinical Practice in accordance with the World Medical Asso-
ciation Declaration of Helsinki: ethical principle for medical
research involving human subjects.23 Written informed consent
was obtained from all participants, and all study procedures
were performed under institutional review board approval. All
authors had access to the study data and reviewed and
approved the final manuscript.

Patients were aged 18 to 75 years (phase 1) or 18 to 70 years
(phase 2a), were HLA-DQ2 or HLA-DQ8 positive with biopsy-
confirmed CeD, and maintained a GFD for �6 months before
screening, with quiescent CeD symptoms and negative serum
� 29 April 2021 � 5:55 pm � ce
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antitissue transglutaminase 2 immunoglobin A. Patients were
required to have no known gluten exposure for at least 10 days
before screening and to be willing to maintain a GFD during the
study.

Phase 1 study (NCT03486990). A first-in-human
safety study was conducted from January 2018 to May 2019
(see Supplementary Material): TAK-101 was evaluated in pa-
tients with CeD in a 2-part trial consisting of a single ascending
dose cohort (Part A) and a repeated ascending dose cohort
(Part B; 2 doses: day 1 and 8). TAK-101 (0.1–8 mg/kg up to a
maximum of 650 mg) was administered by a 30-minute
intravenous infusion in accordance with the dose escalation
shown in Figure 1A.

Phase 2a Study (NCT03738475). A randomized,
double-blind, proof-of-concept study was conducted from
January 2019 to July 2019 (see Supplementary Material). Pa-
tients with CeD were randomized in a 1:1 ratio (via iMedNet
electronic case report forms on day 1) to pretreatment with 2
intravenous doses of placebo (normal saline) or TAK-101 (8mg/
kg, up to amaximum of 650mg) on days 1 and 8, via a 30-minute
intravenous infusion. All patients subsequently underwent a 14-
day oral gluten challenge (12 g/d of gluten for 3 days followed by
6 g/d for 11 days beginning 7 days after the second infusion of
TAK-101 or placebo) (Figure 1B). Investigators, patients, and all
study staff with direct patient contact were blinded to treatment
assignment. A designated unblinded pharmacist (or otherwise
qualified personnel) at each site prepared each dose and had no
contact with the patients and minimal contact with other site
study personnel. The study protocol is registered and accessible
at ClinicalTrials.gov (NCT03738475).
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Endpoint Measures
Phase 1 study. The primary endpoint of the phase 1

study was an evaluation of the safety and tolerability of TAK-
101 administered intravenously in patients with CeD. Second-
ary endpoints were the PK characteristics of TAK-101
(measured as plasma nanoparticle-free gliadin concentra-
tions) and establishment of the dose with the best safety and
tolerability profile for the phase 2a study.

Phase 2a study. The primary endpoint of the phase 2a
study was change from baseline in T-cell–mediated, gluten-
stimulated IFN-g production in peripheral blood mono-
nuclear cells (PBMCs) on day 6 of gluten challenge in patients
treated with TAK-101 compared with placebo, determined
using an enzyme-linked immunospot (ELISpot) assay to
measure the number of gliadin-specific IFN-g spot-forming
units (SFUs).

Secondary endpoints included the following: reduction in
damage to the small intestinal mucosa, measured as the change
from baseline in villus height to crypt depth ratio (Vh:Cd) and
change in intraepithelial lymphocyte (IEL) density using
quantitative histologic assessment of duodenal biopsies and the
proportion of participants who have a �0.4 decrease in Vh:Cd;
the change in percentage of activated CD4þ, CD8þ, and gdþ

effector memory T cells in the blood expressing either the a4b7
gut-homing or aEb7 gut-retention integrins, measured using
FLA 5.6.0 DTD � YGAST64205_proof
time-of-flight mass cytometry (CyTOF); and gliadin-specific
ex vivo T-cell proliferation and cytokine secretion after oral
gluten challenge. Measurement of the proportion of other im-
mune cell phenotypes was also conducted using CyTOF, after
gluten challenge in patients treated with TAK-101 or placebo.
Further secondary endpoints included PK (serum concentra-
tion of gliadin) and safety (adverse events [AEs], serious
adverse events [SAEs], vital signs, changes in serum deami-
dated gliadin peptide immunoglobulin G levels, serum com-
plement and cytokine levels, and hematology and serum
chemistry).
ELISpot Assay
ELISpot assays for gliadin-specific T-cell–mediated IFN-g

production in PBMCs were performed to measure the increase
in the amount of IFN-g producing T cells after 6 days of gluten
challenge.24 PBMCs were collected before gluten challenge and
6 days after the start of gluten challenge. Briefly, PBMCs were
isolated from heparinized whole blood using Ficoll-Paque
density gradient separation (Lymphoprep; Stemcell Technolo-
gies Inc., Vancouver, Canada) and cryopreserved. Before anal-
ysis, cells were rested overnight then resuspended in complete
RPMI 1640 medium containing 10% heat-inactivated human
AB serum and plated at 500,000 cells per well. Cells were
unstimulated (negative control), stimulated with an anti-CD3
monoclonal antibody (100,000 cells per well, positive control)
or with gliadin epitope mix (12.5 mg/mL of each peptide
[deamidated a-gliadin (QLQPFPQPELPYPQPQS) and deami-
dated u-gliadin (PFPQPEQPFPW) peptides]) using the IFN-g
ELISpotpro (Mabtech, Naka Strand, Sweden; Cat# 3420-2APW)
and performed according to the manufacturer’s protocol.25–28

Peptides were acquired from JPT Peptide Technologies
(Acton, Massachusetts, >95% purity). A total of 6 replicates
were performed for negative controls and peptide-stimulated
cells, and triplicates were completed for positive controls.
SFUs were counted using an automated ELISpot reader (AID
Multispot; Autoimmun Diagnostika GmbH, Strassberg, Ger-
many). Normalized SFU values were calculated as the average
SFU per million cells from unstimulated wells subtracted from
the SFU per million cells for each stimulation condition and
then averaged.
Vh:Cd and IEL Analysis (Histology)
Quantitative histologic methods were used to determine

changes from baseline in Vh, Cd, and IEL density in duodenal
biopsies taken during screening and at the end of the 14-day
oral gluten challenge in patients receiving TAK-101 or pla-
cebo in the phase 2a study.29 Histology samples were assessed
centrally (4–6 biopsies per patient per endoscopy). Biopsies
were reviewed by the central pathologist.

Biopsies obtained by endoscopy were taken from the distal-
most part of the second part of the duodenum, or the third part
of the duodenum, before and at the end of gluten challenge.
Each biopsy was taken from a fold if possible. One biopsy was
taken per pass and immediately placed into 10% neutral
buffered formalin; it was then embedded in paraffin and ori-
ented for Vh:Cd evaluation.29 Biopsies were stained with he-
matoxylin and eosin, and evaluated independently by a senior,
experienced, gastrointestinal pathologist blinded to patient
identity and study visit. Recuts were performed as necessary to
� 29 April 2021 � 5:55 pm � ce
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A

B

Part A Single ascending doses

Part B Repeat doses – days 1 and 8

Primary objective: safety and tolerability
 – Clinical signs and symptoms
 – Routine clinical laboratory tests

0.1 mg/kg
n = 2

2 mg/kg
n = 2

0.5 mg/kg
n = 2

4 mg/kg
n = 2

1 mg/kg
n = 3

2 mg/kg
n = 3

4 mg/kg
n = 3
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n = 4
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Acute outpatient follow-up through day 60, 
long-term follow-up (by telephone every 
30 days) through day 180

Duodenal biopsy
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Figure 1. Phase 1 and phase 2a study designs. (A) Phase 1 safety study (n ¼ 23): Part A (single ascending intravenous doses
of TAK-101, n ¼ 17) followed by Part B (2 ascending intravenous doses administered on days 1 and 8, n ¼ 6) assessed the
safety, tolerability, and pharmacokinetics of TAK-101 and established the dose to be used in the phase 2a study. (B) Phase 2a
proof-of-concept study (n ¼ 34) in patients infused with placebo or TAK-101, 8 mg/kg, on days 1 and 8. All patients underwent
a 14-day oral GC beginning on day 15 consisting of 12 g/d for the first 3 days and 6 g/d for the following 11 days. BL, baseline;
GC, gluten challenge. aDay 29 was equivalent to 1 day after the 14-day gluten challenge.
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secure optimal orientation (defined as sections of mucosa
where the entire villus and adjacent full depth of the crypt
ending on the muscularis mucosa could be seen). On the opti-
mally oriented sections, Vh:Cd was determined by measuring
the mean height and mean depth of adjacent villi/proliferative
crypt zones at �100 magnification. Vh:Cds derived from at least
3 optimally oriented individual villus crypt units, derived from
4 to 6 biopsies from a single endoscopy, were averaged to
produce a representative Vh:Cd for each endoscopy time
point.30 Villous lymphocyte infiltration was determined as the
average number of IELs per 100 enterocytes. The IEL count was
FLA 5.6.0 DTD � YGAST64205_proof
performed at �400 magnification on the anti-CD3 immuno-
stained slides and 100 enterocytes were counted twice.
Statistical Analysis
Descriptive statistics were used in the phase 1 study. For

the phase 2a study, mean changes from baseline in the number
of IFN-g SFUs, Vh:Cd, and IEL density within and between
treatment groups were compared using a Wilcoxon signed rank
test and a Wilcoxon rank sum test, respectively.
� 29 April 2021 � 5:55 pm � ce
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Table 1.Summary of AEs and Treatment-Emergent AEs in the Phase 1 Study

Part A: single ascending dose

TAK-101 dose

0.1 mg/kg (n ¼ 2) 0.5 mg/kg (n ¼ 2) 1 mg/kg (n ¼ 3) 2 mg/kg (n ¼ 3) 4 mg/kg (n ¼ 3) 8 mg/kg (n ¼ 4) All doses (n ¼ 17)

Patients with at least 1 treatment-emergent AE, n (%)
AE 1 (50.0) 2 (100.0) 3 (100.0) 3 (100.0) 2 (66.7) 3 (75.0) 14 (82.4)
Grade 3 (severe) AE 0 (0.0) 0 (0.0) 1 (33.3) 0 (0.0) 0 (0.0) 0 (0.0) 1 (5.9)
Drug-related AEa 1 (50.0) 0 (0.0) 2 (66.7) 2 (66.7) 2 (66.7) 3 (75.0) 10 (58.8)
AE leading to withdrawal 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (25.0) 1 (5.9)

Treatment-emergent AEs, n
All AEs 4 3 10 15 7 16 55
Drug-related AEsb 1 0 4 4 6 13 28

Part B: repeated ascending doses

TAK-101 doseb

2 mg/kg (n ¼ 2) 4 mg/kg (n ¼ 2) 8 mg/kg (n ¼ 2) All doses (n ¼ 6)

Patients with at least 1 treatment-emergent AE, n (%)
AE 1 (50.0) 1 (50.0) 2 (100.0) 4 (66.7)
Grade 3 (severe) AE 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
Drug-related AEa 0 (0.0) 1 (50.0) 1 (50.0) 2 (33.3)
AE leading to withdrawal 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Treatment-emergent AEs, n
All AEs 3 5 5 13
Drug-related AEsa 0 3 3 6

AE, adverse event.
aDrug-related AEs are those that the investigator assessed as being possibly or probably related to the study treatment.
bPatients received a single intravenous administration of TAK-101 on days 1 and 8.
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Figure 2. TAK-101 reduces gluten-specific activated T cells in peripheral blood in response to oral gluten challenge. (A)
Number of IFN-gþ SFUs after ex vivo stimulation of PBMCs with an HLA-DQ2-restricted deamidated a- and u-gliadin peptide
mix. (B) Change from baseline in the number of IFN-gþ SFUs after ex vivo stimulation of PBMCs with a gliadin peptide mix. (C)
Number of IFN-gþ SFUs after ex vivo stimulation of PBMCs with anti-CD3. Induction of IFN-gþ T cells in the peripheral blood
of patients receiving placebo or TAK-101 after oral gluten challenge was examined by ELISpot assay. Patients received
placebo (n ¼ 16) or TAK-101 (n ¼ 13) at days 1 and 8, followed by a 14-day oral gluten challenge beginning on day 15. Values
for individual patients are shown as circles, and bars represent mean ± SEM. P values for (A) and (C) were calculated using the
Wilcoxon signed rank test for the mean change from baseline within each treatment group. The P values for (B) were calculated
using the Wilcoxon rank sum test for the mean change from baseline between treatment groups. aDay 20 was equivalent to
day 6 of gluten challenge.
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Methodologic details for the measurement of cell numbers
by CyTOF, gliadin-specific ex vivo T-cell proliferation and
cytokine secretion, PK, safety and tolerability, and full details of
all statistical analyses are provided in the Supplementary
Materials.
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Results
Patient Disposition

Phase 1 study. Twenty-three adults with CeD were
enrolled (Supplementary Figure 1). In the single ascending
dose cohort (Part A, n ¼ 17), 2 patients were enrolled for
each of the first 2 TAK-101 dose levels (0.1 and 0.5 mg/kg)
followed by 3 to 4 patients for each of the subsequent TAK-
101 dose levels (1, 2, 4, and 8 mg/kg). In the repeated
ascending dose cohort (Part B, n ¼ 6), 2 patients were
enrolled for each of the repeat doses (2, 4, or 8 mg/kg)
administered 1 week apart. All patients completed the
study.

Phase 2a study. Thirty-four patients with CeD were
enrolled (TAK-101, n ¼ 16; placebo, n ¼ 18), and 33 pa-
tients (97.1%) completed the study (Supplementary
Figure 2). One patient in the TAK-101 group discontinued
FLA 5.6.0 DTD � YGAST64205_proof
participation owing to noncompliance with gluten con-
sumption. Five patients (2 receiving TAK-101 and 3
receiving placebo) discontinued gluten challenge before 14
days (because of inability to tolerate the gluten) but
completed all other study procedures as scheduled.

Demographic and baseline characteristics of patients in
both studies are presented in Supplementary Table 1.

Endpoints
Phase 1 study: TAK-101 safety outcomes. TAK-101

was well tolerated at doses up to 8 mg/kg after single
and repeated intravenous administrations 7 days apart.
Mild-to-moderate flushing, headache, back pain, and fa-
tigue were the most commonly reported AEs. One patient
who received a single dose of TAK-101 1 mg/kg was
reported to have an AE of nonserious “colitis.” There was
no documentation of any testing carried out for this AE
and the patient was treated with antidiarrheals only.
Symptoms resolved within 8 days and the AE was
considered unrelated to the study drug. Two patients in
the 8 mg/kg single-dose group experienced moderate
infusion-related reactions, one of whom discontinued
treatment. No patients discontinued treatment owing to
� 29 April 2021 � 5:55 pm � ce
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Figure 3. TAK-101 pre-
treatment is associated
with reduced gluten
challenge–induced Vh:Cd
deterioration. (A) Vh:Cd. (B)
Change from baseline in
Vh:Cd at day 29. (C) Num-
ber of IELs/100 enter-
ocytes. (D) Change from
baseline in number of IELs/
100 enterocytes at day 29.
(E) Representative baseline
and post gluten challenge
biopsies from a single pa-
tient treated with placebo,
showing partial villous at-
rophy on day 29 compared
with baseline or (F) treated
with TAK-101, showing
normal villous architecture
without villous atrophy on
day 29. Values for individual
patients are shown as cir-
cles, and bars represent
mean ± SEM. The P values
for (A) and (C) were calcu-
lated using the Wilcoxon
signed rank test for the
mean change from baseline
within each treatment
group. The P values for (B)
and (D) were calculated
using the Wilcoxon rank
sum test for the mean
change from baseline be-
tween treatment groups (F).
aDay 29 was equivalent to 1
day after the 14-day gluten
challenge.
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AEs in the repeated dose group. No deaths or other SAEs
were reported during the study. A summary of treatment-
emergent AEs is provided in Table 1. No clinically
FLA 5.6.0 DTD � YGAST64205_proof
meaningful changes from baseline were observed in he-
matology, coagulation, or serum chemistry parameters,
vital signs, or results of physical examinations.
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Figure 4. TAK-101 prevents the induction of activated T cells bearing gut-homing/retention integrins in response to oral gluten
challenge. Percentage of activated (A) CD4þCD38þa4b7þ T cells, (B) CD8þCD38þaEb7þ T cells, and (C) gdþCD38þaEb7þ T
cells. Change from baseline in percentage of activated (D) CD4þCD38þa4b7þ T cells, (E) CD8þCD38þaEb7þ T cells, and (F)
gdþCD38þaEb7þ T cells. Percentages of activated CD4þ, CD8þ, and gdþ T cells bearing gut-homing/retention integrins (a4b7
or aEb7) in the peripheral blood of patients administered placebo or TAK-101, after 6 days of gluten challenge, were deter-
mined by CyTOF. Values for individual patients are shown as circles, and bars represent mean ± SEM. The P values for (A–C)
were calculated using the Wilcoxon signed rank test for the mean change from baseline within each treatment group. The P
values for (D–F) were calculated using the Wilcoxon rank sum test for the mean change from baseline between treatment
groups. aDay 20 was equivalent to day 6 of gluten challenge.
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Phase 1 study: TAK-101 PK outcomes. Gliadin
exposure peaked at the end of each TAK-101 infusion
(highest mean ± SD maximum drug serum concentration
FLA 5.6.0 DTD � YGAST64205_proof
was 938 ± 26.9 ng/mL, observed in the 8 mg/kg repeat
dose cohort) then rapidly declined over the next 4 hours
(mean terminal elimination half-life 2.00–4.85 hours across
� 29 April 2021 � 5:55 pm � ce
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Figure 5. Fold-change from baseline in number of immune cell types in peripheral blood in individual patients treated with
TAK-101 (n ¼ 13) or placebo (n ¼ 16) post gluten challenge, determined via CyTOF analysis. CM, central memory (T cells);
CSMB, class-switched memory B cells; EM, effector memory (T cells); mDC, myeloid dendritic cells; NCSMB, non–class-
switched memory B cells; NK, natural killer cells; NKT, natural killer T cells; pDC, plasmacytoid dendritic cells; TCR, T-cell
receptor; TEMRA, terminally differentiated effector memory cells reexpressing CD45RA.
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all dose levels in the single and repeated dose cohorts)
(Supplementary Table 2). Plasma gliadin concentrations
increased with rising doses of TAK-101, and similar PK
parameters were observed after single and repeated TAK-
101 doses. No accumulation of TAK-101 was observed
from day 1 to day 8 in the repeated dose cohort. A maximum
feasible dose of 8 mg/kg was determined for TAK-101
administration in the phase 2a study.

Phase 2a study: TAK-101 efficacy outcomes. In the
placebo group, ex vivo gliadin peptide stimulation of PBMCs
after 6 days of oral gluten challenge resulted in an
approximately 10-fold increase over baseline in mean IFN-
gþ SFUs/106 PBMCs (baseline mean IFN-gþ SFUs, 1.98; day
20 mean IFN-gþ SFUs, 19.56; P ¼ < .001, Figure 2A). In the
TAK-101 group, the gluten challenge–induced gliadin-
dependent T-cell response was reduced by nearly 90%
(baseline mean IFN-gþ SFUs, 3.08; day 20 mean IFN-gþ
SFUs, 5.09; P ¼ .735; Figure 2A). The mean change from
baseline was 17.58 SFUs for placebo vs 2.01 SFUs for TAK-
101 (P ¼ .006; Figure 2B). In contrast, the number of IFN-
gþ SFUs was equivalent in the 2 treatment groups on
stimulation of PBMCs with anti-CD3 (Figure 2C), indicating
that TAK-101 acts in an antigen-specific manner.

Vh:Cd decreased from baseline in the placebo group af-
ter oral gluten challenge (mean change from baseline to day
29, �0.63; P ¼ .002), consistent with gluten-induced
FLA 5.6.0 DTD � YGAST64205_proof
mucosal inflammation and villous atrophy. Vh:Cd was not
significantly decreased in the TAK-101 treatment group
(mean change from baseline to day 29, �0.18; P ¼ .110;
Figure 3A). However, comparison of the mean change be-
tween the 2 groups (Figure 3B) did not reach statistical
significance (P ¼ .080) (see Supplementary Figure 3 for
change in Vh:Cd in individual patients). A decrease in Vh:Cd
of at least 0.4 was measured in 8 (53.3%) of 15 patients in
the placebo group and 3 (23.1%) of 13 patients treated with
TAK-101, but this difference between the groups was not
significant (P ¼ .1367).

The density of IELs increased in response to gluten
challenge in patients given either placebo or TAK-101 (P <
.001, Figure 3C), with no differences in change from baseline
found between the 2 treatment groups (P ¼ .289;
Figure 3D).

Representative histopathologic sections from placebo-
and TAK-101–treated patients are shown in Figure 3E and
Figure 3F, respectively. These photomicrographs show
flattening of the villi and reduction in crypt depth in a pa-
tient with CeD from the placebo treatment group, in
response to the 14-day oral gluten challenge (Figure 3E),
compared with a patient in the TAK-101 treatment group
(Figure 3F).

The proportion of activated (CD38þ) CD4þ, CD8þ, and
gdþ effector memory T cells was increased 6 days after oral
� 29 April 2021 � 5:55 pm � ce
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Figure 6. Proposed mechanism of action of TAK-101 based on preclinical animal model and clinical studies. (A) Intravenously
administered gliadin-encapsulating PLGA nanoparticles are taken up by tolerogenic APCs in the liver and splenic marginal
zone expressing the MARCO scavenger receptor. (B) PLGA particle uptake by APCs induces the upregulation of PD-L1, the
release of TGF-b and IL-10, and the processing and presentation of gliadin T-cell epitopes to gliadin epitope-specific T cells.
(C) Tolerance is induced and maintained by multiple mechanisms, including T-cell anergy, and the activation of both induced
FOXP3þ Tregs (iT-regs) and IL10-producing Tr1 cells. (D) Effective tolerance induction results in the inhibition of activation of
and trafficking of gliadin-specific IFN-g–producing T helper 1 effector cells to the small bowel, protecting the gut from immune-
mediated damage. FOXP3, forkhead box P3; IL, MHC, major histocompatibility complex; PD-1, programmed cell death protein
1; PD-L1, programmed death-ligand 1; PLGA, poly(DL-lactide-co-glycolic acid); TCR, T-cell receptor; TGF, transforming growth
factor; Tr1, type 1 regulatory T cell.
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gluten challenge in the peripheral blood of patients who
received placebo, but not in patients treated with TAK-101
(P ¼ .002, P < .001, and P < 0.001, respectively)
(Figure 4A–C). Gluten-induced increases from baseline in
the proportion of CD4þCD38þa4b7þ (Figure 4D),
CD8þCD38þaEb7þ (Figure 4E), and gdþCD38þaEb7þ

(Figure 4F). T cells were also diminished in patients given
TAK-101 compared with those given placebo (P ¼ .013, P ¼
.004, and P ¼ .010, respectively). The relative fold-change in
percentages of other immune cell phenotypes, after gluten
challenge in individual patients, in the placebo and TAK-101
treatment cohorts, is shown as a heat map in Figure 5. In
addition to the cell types that have been previously
described as sensitive to gluten challenge,5 we also noted
that gut-homing T cells with a reported regulatory pheno-
type (CD4þ, CD25þ, CD127�)31 were also increased with
gluten challenge and suppressed by TAK-101. Dendritic
cells, B lineage cells, natural killer cells, monocytes, and
most T-cell subtypes, other than those T cells that expressed
a4b7 or aEb7, did not change with gluten challenge.

Phase 2a study: TAK-101 safety outcomes. The
most common AEs reported during dosing in the phase
2a study were gluten-related gastrointestinal disorders,
and included abdominal distention or pain, diarrhea,
flatulence, nausea, vomiting, and abnormal gastrointes-
tinal sounds. All AEs were mild or moderate in intensity
except gastrointestinal disorders in 1 patient in the TAK-
101 group and 2 patients in the placebo group, which
were severe (grade 3). No patients experienced an AE
with severity of grade 4 or above and no deaths or other
serious AEs were reported (Supplementary Table 3).
FLA 5.6.0 DTD � YGAST64205_proof
No effect of TAK-101 was observed on ex vivo T-cell
proliferation and no clinically meaningful changes in vital
signs, routine clinical laboratory test results, or serum
cytokine/chemokine levels occurred.

Further safety and PK results are reported in the
Supplementary Materials.
1199
Discussion
Immunologic tolerance is a state of antigen-specific

nonresponsiveness to foreign or self-antigens mediated by
clonal deletion, clonal anergy, and/or the activity of regu-
latory T-cell (Treg) subsets.32 In conventional autoimmune
diseases, self-tolerance is broken by a variety of mecha-
nisms, including molecular mimicry and bystander activa-
tion, leading to self-tissue damage.33 In CeD, oral tolerance
to gluten is broken by unknown mechanisms, resulting in
activation of gliadin-specific IFN-g- and interleukin (IL)21-
producing CD4þ T cells, and ultimately activated cytotoxic
CD8þ T cells.3–5 These cells trigger inflammation in the
small bowel, leading to downstream activation of harmful
(auto)immune responses, causing further mononuclear cell
activation, villous atrophy, and crypt hyperplasia.34–37

Reestablishment of immunologic tolerance is a thera-
peutic aim for T-helper (Th) cell 1/Th17-mediated autoim-
mune diseases, Th2-directed antibody-mediated allergic
diseases, and CD8-mediated transplant rejection. Currently,
none of the attempts to induce tolerance via parenteral
administration of soluble antigens, peptides, or altered
peptide ligands have led to the development of an approved
therapy for reestablishing immunologic tolerance in
� 29 April 2021 � 5:55 pm � ce
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autoimmune diseases.32,38,39 It has been demonstrated that
intravenous administration of protein/peptide antigens
delivered by carboxylated PLGA (PLGA-Ag) nanoparticles is
an effective method for inducing antigen-specific tolerance
in mouse models of autoimmune13–17,20–22 and allergic
diseases.40 We chose to initiate clinical testing of the PLGA-
Ag tolerance-inducing platform in CeD for multiple reasons,
including (1) gliadin-specific T-cell responses to specific
HLA-defined peptide epitopes are the known upstream
driver of the CeD disease process1,41; (2) Good
Manufacturing Practice-grade gliadin can be produced for
clinical testing; (3) well-characterized assays are available
to measure gliadin-specific T-cell and antibody re-
sponses27,28; (4) performance of gluten challenges in a CeD
clinical trial is feasible and results in reliable immune acti-
vation42; and (5) intestinal biopsies have been developed as
the standard methodology used to evaluate intestinal dam-
age and inflammation.43 Direct support for the current
clinical study came from findings in a mouse model of CeD
induced by the transfer of activated gliadin-specific T cells
to C57BL/6-Rag1 recipient mice.18 In this study, intrave-
nous infusion of gliadin-encapsulating PLGA-Ag nano-
particles inhibited the proliferation of gliadin-stimulated T
cells and their secretion of IFN-g and IL17, increased FOXP3
(forkhead box P3) expression by regulatory T cells,
decreased antigliadin antibody production, and prevented
weight loss and gliadin-induced gut histopathology.18

We evaluated the potential of TAK-101, gliadin encap-
sulated in PLGA-Ag nanoparticles, to induce immune toler-
ance in patients with biopsy-confirmed CeD. We chose to
encapsulate cGMP-grade gliadin protein extract within PLGA
nanoparticles instead of specific gliadin peptides that
comprise known immunodominant epitopes. Using the
intact gliadin protein extract ensured that all immunodo-
minant gliadin epitopes were encapsulated at equimolar
concentrations. Furthermore, although there are immuno-
dominant peptides, especially in HLA-DQ2.5 individuals,
there is known to be a range of immunoreactive peptides
that differ between individuals. Our goal is to develop a
therapy that has the potential to work for all patients with
CeD, regardless of HLA type. For this reason, we chose to
induce tolerance to gliadin protein extract containing a
broad range of epitopes, as prior animal model data suggest
that this would be effective at the protein loads achiev-
able.20,21 The presence of deamidated gliadin was confirmed
by mass spectrometry to ensure sufficient activity of the
gliadin extract.

In our phase 1 and 2a studies, intravenous administra-
tion of up to 2 doses of TAK-101 8 mg/kg in patients with
CeD on a GFD was well tolerated with an acceptable safety
profile. An AE of nonserious “colitis” (with no confirmation
by colonoscopy recorded) was reported for 1 patient who
received a single dose of TAK-101 1 mg/kg, which began on
day 20 post therapy and resolved on day 28. This AE was
not observed with higher doses of TAK-101 and it seems
unlikely that the event was due to study drug administra-
tion or immunosuppression (no antibiotics were adminis-
tered). No accumulation of TAK-101 was observed from day
1 to day 8 in the phase 1 repeated dose cohort.
FLA 5.6.0 DTD � YGAST64205_proof
In the phase 2a study, the primary efficacy endpoint of
reduction in the number of circulating gliadin-specific IFN-g
spot-forming T cells in response to oral gluten challenge,
after treatment with TAK-101, was met. It is notable that the
degree of downregulation of the gluten challenge–induced
gliadin-specific T-cell response was antigen specific with
no apparent effect on the overall T-cell responses to mito-
genic anti-CD3 T-cell stimulation in patients treated with
TAK-101. Furthermore, pretreatment with TAK-101 led to a
reduction in the proportion of circulating activated (CD38þ)
CD4þ, CD8þ, and gdþ T cells bearing gut-homing/retention
integrins (a4b7 or aEb7) characteristic of CeD-induced in-
testinal inflammation, while not affecting other PBMC cell
populations within the blood (Figure 5). The reliability of
reduced IFN-g–producing gliadin-specific cells as a marker
for protection has not been confirmed, and further studies
are required to fully evaluate the effect of TAK-101 pre-
treatment on symptoms in patients with CeD.44 Future
studies will also include IL2 measurements after gluten
exposure, because secretion of this cytokine in the hours
after single-dose gluten challenge has been shown to be a
marker of immune response to gluten in humans.44

TAK-101 pretreatment was also associated with a
reduction in gluten challenge–induced small intestinal mu-
cosa deterioration (as measured by Vh:Cd). Although there
was a significant deterioration in Vh:Cd in the placebo
group, a significant change in Vh:Cd was not observed with
TAK-101 pretreatment. However, the difference in change of
Vh:Cd from baseline between the 2 groups did not reach
statistical significance, likely owing to the reduced power of
this comparison, which is a ratio of a ratio, in comparison
with the analysis of change from baseline within each group.
Despite the observed reduction in enteropathy with TAK-
101 pretreatment, an equivalent increase in the density of
IELs after gluten challenge was observed in both placebo-
and TAK-101–treated patients, which is interesting consid-
ering the reduced number of gut-homing activated CD8þ T
cells seen in the peripheral blood. One hypothesis is that the
increase in IEL density in the TAK-101 group may reflect an
increased ratio of functional regulatory to effector T-cell
subsets in patients receiving TAK-101 vs placebo, in light of
the reduced enteropathy in those treated with TAK-101
(regulatory to effector T-cell ratios will be determined in
both blood and biopsy samples in future studies). This
phenomenon has been observed in animal models including
an increased Treg to effector T-cell ratio in the pancreas of
nonobese diabetic mice protected from type 1 diabetes by
tolerization with PLGA-Ag nanoparticles encapsulating a
diabetogenic pancreatic cell autoepitope.17

Contrary to the current results demonstrating the suc-
cessful induction of gluten-specific tolerance in patients
with celiac disease (using the intravenous infusion of PLGA
nanoparticles encapsulating intact gliadin), a recently
terminated trial showed that the intradermal injection of
soluble gliadin peptides (Nexvax44) did not appear to suc-
cessfully induce a clinically relevant degree of tolerance.
There are 2 major differences between the approach to
tolerance induction using Nexvax and the approach used in
our study: (1) the use of soluble gliadin peptides vs the
� 29 April 2021 � 5:55 pm � ce
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delivery of full-length gliadin encapsulated in pro-
tolerogenic PLGA nanoparticles, and (2) intradermal vs
intravenous routes of antigen delivery. Our approach allows
for the presentation of all possible gliadin CD4 and CD8
epitopes after uptake and processing of the nanoparticles by
tolerogenic APCs. Furthermore, peripheral vaccination is
expected to induce a Th1-cell response, whereas the envi-
ronment of the spleen and liver is known to be immuno-
suppressive when antigens or even plain nanoparticles are
engulfed by splenic/liver (myeloid) APCs or liver sinusoidal
endothelial cells. Hence, intradermal or subcutaneous de-
livery of gliadin peptides is expected to target immunogenic
APCs in the skin and draining lymph nodes, whereas
intravenous delivery is expected to target tolerogenic APCs
in the spleen and liver. We speculate that if intradermal or
subcutaneous injected peptides are found in the blood, the
presentation by immunogenic APCs tips the balance toward
activation rather than regulation.

A priori, there is no reason why an appropriate mixture
of immunodominant gliadin peptides should not induce
tolerance, as we have shown that PLGA-Ag nanoparticles
encapsulating a cocktail of 4 encephalitogenic myelin pep-
tide epitopes could induce tolerance for the prevention and
treatment of disease in separate groups of mice in which
experimental allergic encephalomyelitis was induced by
each of the individual myelin peptides or by the peptide
mixture (manuscript in preparation). In addition, our pre-
vious trial in patients with early relapsing–remitting mul-
tiple sclerosis, infused intravenously with autologous
apoptotic PBMCs coupled with a cocktail of 7 myelin pep-
tides, showed successful induction of tolerance in T cells
specific for 4 of the 7 autoepitopes.45 Given these data, it is
likely that the major reason for our ability to successfully
induce gliadin-specific tolerance is that intravenous infusion
of gliadin-encapsulating carboxylated PLGA nanoparticles
effectively delivers the antigen to MARCO-expressing “pro-
tolerogenic” APCs in the splenic marginal zone and spleen.
These same APCs have evolved to clear apoptotic debris
from the hematopoietic system to aid in maintaining self-
tolerance.13 In contrast, intradermal injection of soluble
peptides leads to antigen uptake and presentation by
“proimmunogenic” APCs in the dermis and draining lymph
nodes that have evolved to activate T cells for protection
against infectious agents.

We hypothesize that the apparent efficacy of TAK-101 in
patients with CeD can be explained by preclinical studies
elucidating the mechanisms by which PLGA-Ag nano-
particles induce tolerance.13,15,16,46 Although we cannot
directly assess the tissue immune effects of therapy in
humans, results from previous animal model studies sug-
gest that after intravenous infusion, TAK-101 may be taken
up predominantly by pro-tolerogenic APCs in the splenic
marginal zone and liver expressing the MARCO scavenger
receptor that binds polyanionic surfaces. This may lead to
processing and HLA-DQ2–restricted presentation of domi-
nant gliadin epitopes by host tolerogenic APCs, upregulation
of programmed death-ligand 1 co-inhibitory molecules, and
release of IL10 and transforming growth factor b. This could
provoke anergy induction in gliadin-specific T cells and
FLA 5.6.0 DTD � YGAST64205_proof
activation of gliadin-specific Tregs, which are critical for
PLGA-Ag–tolerance induction and maintenance by inhibiting
T-cell activation and controlling T-cell trafficking (Figure 6).
In contrast, it is believed that intradermal injection of sol-
uble peptides leads to presentation by APCs in the draining
lymph nodes, which express high levels of costimulation
molecules and are pro-immunogenic and inefficient at
inducing anergy and Treg activation.17

PLGA-Ag nanoparticles are believed to target APCs
responsible for the daily scavenger receptor-dependent
uptake and disposal of vast numbers of hematopoietic
cells while maintaining self-tolerance.47 Thus, we propose
that carboxylated PLGA-Ag nanoparticles serve as surro-
gates for apoptotic debris, triggering synergistic tolerance
mechanisms that evolved to deal with disposal after normal
apoptotic cell death, while avoiding immune activation. The
major advantage of this tolerance system is that by varying
the antigen(s) encapsulated within the “universal” carbox-
ylated PLGA nanoparticle, it is theoretically possible to treat
any immune-mediated disease when the targeted (auto)
antigens are known.

This phase 2a trial had limitations, including the small
number of patients tested. Although the inclusion criteria
covered both HLA-DQ2 and HLA-DQ2/DQ8 individuals
(which allowed for measurement of IFN-g production via
ELISpot assay after stimulation with the 5 HLA-DQ2
restricted epitopes), there were no HLA-DQ8þ individuals
in the treatment group, owing to the low frequency of this
genotype. Larger studies are therefore required to confirm
our results in a wider spectrum of celiac-permissible HLA
types. Some individuals discontinued gluten consumption
earlier than planned. However, even with these limitations,
the preliminary evidence indicates TAK-101 may reduce
small bowel enteropathy. We were unable to assess whether
the protective effects of TAK-101 translated into a reduction
in symptoms, as this study design, with weekly patient-
reported outcomes, did not allow adequate granularity to
assess symptom differences between groups. Furthermore,
as gluten challenge is associated with a strong nocebo effect
and study enrollment may select for individuals with less
severe symptoms on gluten exposure, gluten challenge
studies are felt to be suboptimal for assessment of symp-
toms. The effect of treatment on symptoms in CeD will be
rigorously assessed in future studies. The gluten challenge
dose used in future studies will likely also be reduced to be
in line with real-world gluten consumption levels. The high
gluten doses used this current study were necessary for
reliable ELISpot responses (our chosen primary endpoint
based on the mechanism of action of TAK-101). In addition,
the durability of TAK-101–induced tolerance in humans is
unknown at this time. This raises important questions about
TAK-101 therapy, such as whether there is a requirement
for repeated doses to maintain tolerance, the number and
frequency of doses required, and the ability of patients with
CeD to resume ingestion of gluten-containing foods, which
may reinforce TAK-101–induced activation of gliadin-
specific regulatory T cells. Finally, TAK-101–induced toler-
ance targets T cells, and it is not known how long it takes for
preexisting antigliadin and antitissue transglutaminase
� 29 April 2021 � 5:55 pm � ce
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antibodies to abate in the absence of T-cell help, which may
be required for optimal clinical effect. These questions will
be explored in larger subsequent clinical trials.

In conclusion, TAK-101 demonstrated a favorable safety
profile and efficacy in patients with CeD through inhibition
of T-cell activation and possible reduction in the deterio-
ration of Vh:Cd following gluten challenge. These findings
support further clinical development of this novel immu-
notherapy for CeD and other antigen-specific immune
diseases.
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Note: To access the supplementary material accompanying
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Supplementary Material

List of Study Investigators and Sites
NCT03486990: A phase 1 first-in-human, 2-part, multicenter dose-escalation and repeat-dose study of the

safety, tolerability, and pharmacokinetics of timp-glia in subjects with celiac disease
Date of first patient, first visit: 23 January 2018. Date of last patient, last visit: 24 May 2019.

Investigator Site name

Michael Koren, MD Jacksonville Center for Clinical Research
Jacksonville, Florida

Mark Matson, MD Prism Clinical Research
Saint Paul, Minnesota

Joseph A. Murray, MD Mayo Gastroenterology Research Unit
Rochester, Minnesota

NCT03738475: A randomized, double-blind, placebo-controlled study of the safety, pharmacodynamics, efficacy,
and pharmacokinetics of TIMP-GLIA in subjects with well-controlled celiac disease undergoing oral gluten challenge
(phase 2a)

Date of first patient, first visit: 04 January 2019. Date of last patient, last visit: 22 July 2019

Investigator Site name

Robert P. Fogel, MDCM, MHSA Clinical Research Institute of Michigan, LLC

Paul K. Haynes Indianapolis Gastroenterology Research Foundation

Mark A. Matson Prism Research

Joseph A. Murray, MB, BCH, BAO,
DCH, MD, FRCPI, AGAF, FACG

Mayo Clinic

Barbara E. Rizzardi, MD Advanced Clinical Research

Jocelyn Silvester Beth Israel Deaconess Medical Center

Mark A. Turner, MD Advanced Clinical Research

The above table lists only those investigators/sites who enrolled patients.

15.e1 Kelly et al Gastroenterology Vol. -, No. -

FLA 5.6.0 DTD � YGAST64205_proof � 29 April 2021 � 5:55 pm � ce

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920



Supplementary Methods

TAK-101 Nanoparticle Synthesis and
Characterization

Poly(DL-lactide-co-glycolic acid) (PLGA) solution was
mixed with custom manufactured cGMP-grade gliadin pro-
tein extract (Sigma-Aldrich, St. Louis, Missouri) to generate a
water-in-oil emulsion. This was mixed with surfactants to
form an oil-in-water secondary emulsion. The solvent was
removed by evaporation, yielding PLGA nanoparticles
encapsulating gliadin, which were washed, filtered, and
concentrated via tangential flow filtration. TAK-101 was
free from surface protein as measured by flow cytometry.
TAK-101 was supplied as a lyophilized powder containing
approximately 100 mg of PLGA nanoparticles per vial (batch
no. B17060055), with an average particle diameter of 489
nm and a zeta potential of �45 mV. The protein content was
8.4 mg of deamidated and native gliadin per milligram of
PLGA. Release of encapsulated protein on TAK-101 recon-
stitution was <5%. The lyophilized product was sterile (US
Pharmacopeia [USP] 71 sterility test) and below compendial
limits for endotoxin (USP 85 bacterial endotoxins test) for a
parenteral product.

Time-of-Flight Mass Cytometry Staining and Data
Acquisition

To gain a better understanding of the effect of treatment
with TAK-101 on diverse immune cell subtypes, time-of-
flight mass cytometry (CyTOF) was performed on periph-
eral blood mononuclear cells (PBMCs) from whole blood at
baseline, at pretreatment with TAK-101, and on day 6 after
the start of gluten challenge. PBMCs were isolated from
heparinized whole blood using Ficoll-Paque (Lymphoprep;
Stemcell Technologies Inc., Vancouver, Canada) density
gradient separation. CyTOF staining and data acquisition
were performed on PBMCs as previously described.1 The
targets and labeled antibodies used for staining are listed in
Supplementary Table 4.

Pharmacokinetics
TAK-101 pharmacokinetics (PK) were evaluated by

determining the concentration of nanoparticle-free gliadin
in plasma samples from patients enrolled in the phase 1
and phase 2a studies. Serial blood samples were collected
before dosing, at the end of infusion, and periodically up
to 144 hours post dose. In the phase 2a study, PK samples
were collected before dosing, at the end of infusion, and 2
hours after the end of infusion on day 8. PK samples were
analyzed using a validated enzyme-linked immunosorbent
assay (ELISA) to quantify free gliadin in dipotassium
ethylenediaminetetraacetic acid (K2EDTA) plasma.2 The
lower limit of quantification of this assay was 40 ng/mL.
Individual concentration data were summarized descrip-
tively by treatment group and collection time points. PK
parameters were derived using noncompartmental anal-
ysis based on concentration data obtained in the phase 1
study.

Gliadin-specific T-cell Proliferation and Cytokine
Secretion

In the phase 2a study, gliadin-specific T-cell proliferation
and cytokine secretion were determined by ELISA. Blood
samples were collected predose on day 1, before gluten
consumption on day 15, and after gluten consumption on
day 20. Cytokine and chemokine measurements included
interferon (IFN)-g; interleukin (IL)1-b, IL2, IL4, IL6, IL8,
IL10, IL12p70, and IL13; and tumor necrosis factor-a (TNF-
a).

Safety Measurements
In the phase 1 and 2 studies, safety measurements

included assessment of frequency and severity of adverse
events (AEs), physical examinations, measurement of vital
signs and standard serum chemistry (including glucose,
calcium, albumin, total protein, carbon dioxide/bicarbonate,
chloride, potassium, sodium, total bilirubin, alkaline phos-
phatase, alanine aminotransferase, aspartate aminotrans-
ferase, blood urea nitrogen, creatinine, creatine kinase).
Hematological assessments included hemoglobin, red blood
cell count, white blood cell count, and differential platelet
count.

Statistical Analysis
Descriptive statistics were used in the phase 1 study. For

the phase 2a study, the sample size for the primary efficacy
endpoint was calculated using a 2-sided .05 significance
level, a statistical power of w70%, and an assumed increase
in the mean number of IFN-g SFUs of 75 (standard deviation
[SD], 100) in the placebo group and 5 (SD, 10) in the TAK-
101 group. For the primary efficacy endpoint, mean changes
from baseline in the number of IFN-g SFUs within and be-
tween treatment groups were compared using a Wilcoxon
signed rank test and a Wilcoxon rank sum test, respectively.
Similarly, mean changes from baseline in Vh:Cd and IEL
density within and between treatment groups were
compared using a Wilcoxon signed rank test and a Wilcoxon
rank sum test, respectively.

Supplementary Results
Safety and Tolerability of TAK-101

In the phase 2a study, 1 patient from the TAK-101 group
experienced 1 severe (grade 3) AE of diarrhea 7 days before
the gluten challenge, which was considered likely to be
related to TAK-101. This individual was unable to tolerate
the gluten challenge and only completed 1 day of the trial.
The AE resolved and no action was taken. Two patients from
the placebo group experienced a total of 8 severe (grade 3)
AEs; 1 participant reported 6 events (diarrhea, abdominal
pain, vomiting, dizziness, nausea, and headache), which
were considered unlikely to be related to placebo and
occurred on the first day of the gluten challenge, and 1
participant reported 2 events (ongoing oral ulcers and
intermittent angioedema), which were considered unlikely
to be related to placebo and occurred on the day before the
gluten challenge. The AEs were not resolved, and no action
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Supplementary Figure 1. Patient disposition in the phase 1 trial (NCT03486990).

was taken. A summary of AEs in the phase 2a study is
provided in Supplementary Table 3.

To assess the safety and tolerability of TAK-101 further,
levels of complement activation were measured after TAK-
101 administration. With repeated dosing of TAK-101
(phase 1, part B), transient mean increases were observed
in levels of C3a and SC5b-9 15 and 30 minutes after the start
of the infusions: mean (SD) C3a concentration, 16.1 (12.7)
ng/mL predose and 309.2 (368.8) ng/mL 30 minutes post
second dose; mean (SD) SC5b-9 concentration, 114.0 (56.6)
ng/mL predose and 1037.5 (1147.6) ng/mL 30 minutes post
second dose in the 8 mg/kg TAK-101 cohort. Mean levels of
C3a and SC5b-9 had returned toward preinfusion values by
24 hours: mean (SD) C3a concentration, 9.7 (1.9) ng/mL;
mean (SD) SC5b-9 concentration, 125.5 (36.1) ng/mL 24
hours post second dose in the 8 mg/kg TAK-101 cohort. No
significant changes were observed in C5a levels.

PK of TAK-101
Peak concentrations (Cmax) of gliadin were observed at

the end of infusion, then levels rapidly decreased
(Supplementary Table 3). At 24 hours post dose, most
concentrations were below the limit of quantification. In the
phase 1 study, the mean half-life (t1/2) of TAK-101 ranged
from 2.0 to 4.9 hours over the evaluated dose range and
dose regimens. There was no accumulation between
repeated doses on days 1 and 8 in phase 1, part B. Overall,
gliadin exposure increased in an approximately dose-
proportional manner over the range 0.5 to 8.0 mg/kg (as
indicated by Cmax and the area under the concentration–
time curve [AUC]), although dose proportionality was not

calculated owing to limited sample sizes. No dose-limiting
toxicity was observed in part A or B of the phase 1 study.
Owing to moderate infusion-related reactions observed in 2
of the 4 patients receiving TAK-101 8 mg/kg in part A of
phase 1 (which resolved within 15–30 minutes), the sub-
sequent infusion duration was extended, from a fixed rate
over 2 hours to a progressively increasing rate over 2.5
hours, leading to a prolonged exposure compared with
other dose levels. Comparable gliadin concentrations at the
same time points were observed between the phase 1, part
B and phase 2a studies for the 8 mg/kg dose.

Pharmacodynamics of TAK-101 (Phase 2a)
Expected changes were seen in multiple immune cell

populations in the placebo group, including a4b7þ, CD4þ,
and CD38þ T cells, aEb7þ, CD4þ, CD8þ, and CD38þ T cells.
Fold change across all cell types was reduced or prevented
with TAK-101 treatment.
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Supplementary Figure 2. Patient disposition in the phase 2a
trial (NCT03738475).
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Supplementary Figure 3. Change from baseline in Vh:Cd at day 29 in individual patients treated with TAK-101 or placebo.
Histologic sections from gut biopsies were examined by a blinded observer to determine the effects of placebo and TAK-101
on villous atrophy in response to a 14-day oral gluten challenge as described in the Methods. aDay 29 was equivalent to 1 day
after the 14-day gluten challenge.
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Supplementary Table 1.Demographic and Baseline Characteristics of Patients in Phase 1 and Phase 2a Studies

Variable

Phase 1 Phase 2a

Part A (SAD)
All doses (n ¼ 17)

Part B (RAD)
All doses (n ¼ 6) TAK-101 (n ¼ 16) Placebo (n ¼ 18) Total (n ¼ 34)

Age, y
Mean (SD) 39.5 (14.6) 42.8 (11.7) 44.6 (13.5) 42.2 (16.7) 43.3 (15.1)
Median (min–max) 39.0 (19–68) 41.0 (31–59) 47.0 (21–70) 42.0 (18–67) 46.0 (18–70)

Sex, n (%)
Men 4 (23.5) 1 (16.7) 3 (18.8) 3 (16.7) 6 (17.6)
Women 13 (76.5) 5 (83.3) 13 (81.3) 15 (83.3) 28 (82.4)

Ethnicity, n (%)
Hispanic or Latino 1 (5.9) 0 (0.0) 1 (6.3) 0 (0.0) 1 (2.9)
Not Hispanic or Latino 16 (94.1) 6 (100.0) 15 (93.8) 18 (100.0) 33 (97.1)

Race, n (%)
White 16 (94.1) 6 (100.0) 16 (100.0) 18 (100.0) 34 (100.0)

Body mass index, kg/m2

Mean (SD) 28.6 (5.3) 25.9 (3.2) 28.2 (4.8) 27.1 (4.8) 27.6 (4.8)
Median (min–max) 27.0 (20.4–37.8) 25.0 (22.5–31.0) 28.1 (17.9–38.1) 27.5 (19.4–34.6) 27.9 (17.9–38.1)

HLA type, n (%)
HLA-DQ8 2 (11.8) 0 (0.0) 0 (0.0) 2 (11.1)a 2 (5.9)a

HLA-DQ2 14 (82.4) 6 (100.0) 16 (100.0)a 17 (100.0)a,b 33 (100.0)a,b

Disease duration, years
Mean (SD) 7.2 (6.9) 11.7 (3.6) 9.15 (5.0) 9.69 (5.8) 9.44 (5.4)
Median (min–max) 6.0 (1–30) 11.5 (7–16) 9.3 (2.5–21.1) 8.5 (1.3–20.2) 9.0 (1.3–21.1)

Gluten-free diet duration, mo
Mean 82.8 (81.3) 154.2 (47.3) 106.1 (56.9) 126.7 (72.3) 117.0 (65.4)
Median (min–max) 73.0 (14–362) 165.5

81–201
111.1 (28.3–253.6) 113.4 (13.0–268.0) 111.1 (13.0–268.0)

HLA, human leukocyte antigen; min–max, minimum–maximum; RAD, repeat ascending dose study; SAD, single ascending
dose study; SD, standard deviation.
aHLA-DQ2 and HLA-DQ8 data not reported for 1 patient in the placebo group (phase 2a).
bIncludes both heterozygous and homozygous patients.
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Supplementary Table 2.Plasma Gliadin Pharmacokinetic Parameters in Patients With Celiac Disease After Single or Repeated
Intravenous Infusions of TAK-101 in the Phase 1 Study

Part A: single ascending dose

Parameter

TAK-101 dosea

0.5 mg/kg (n ¼ 2) 1 mg/kg (n ¼ 3) 2 mg/kg (n ¼ 3) 4 mg/kg (n ¼ 3) 8 mg/kg (n ¼ 3)b

Cmax (ng/mL) 96.7 (42.9) 220 (6.7) 461 (76.8) 859 (185) NAc

Tmax
d 0.54 (0.50–0.58) 0.50 (0.50–0.58) 0.50 (0.50–0.58) 0.50 (0.50–0.58) NAc

AUClast (ng/mL) 173 (177) 505 (63) 1990 (1190) 2960 (616) 5760 (5420)

AUCinf (ng/mL) NCe 605 (21)f 3160 (827)f 3220 (710) 8890 (3970)f

t1/2 NCe 2.00 (0.50) 4.85 (3.19) 3.08 (0.25) 4.36 (2.32)f

CL (L/hour) NCe 137 (17.7)f 64.6 (4.8)f 83.3 (8.5) 91.1 (24.0)f

Vss (L) NCe 345 (72.1)f 592 (238)f 364 (24.6) 405 (22.6)f

Cmax/dose (ng/ml/mg) 2.00 (0.71) 2.81 (0.401) 2.74 (0.535) 3.22 (0.307) NAc

AUClast/dose (ng/mL/mg) 3.46 (3.39) 6.48 (1.42) 10.6 (4.06) 11.1 (1.04) 7.43 (6.20)

AUCinf/dose (ng/mL/mg) NCe 7.41 (0.97)f 15.5 (1.13)f 12.1 (1.31) 11.4 (3.01)f

Part B: repeated ascending doses

Parameter

TAK-101 doseg

2 mg/kg (n ¼ 2) 4 mg/kg (n ¼ 2) 8 mg/kg (n ¼ 2)

Cmax (ng/mL)
Day 1 252 (17.0) 536 (119) 938 (26.9)
Day 8 NCe 416 (108) 738 (85.6)

Tmax
d

Day 1 2.86 (2.85–2.87) 3.21 (2.82–3.60) 2.94 (2.83–3.05)
Day 8 NCe 3.08 (2.82–3.33) 2.90 (2.80–3.00)

AUClast (ng/mL)
Day 1 1020 (571) 3000 (884) 4600 (438)
Day 8 NCe 1690 (1310) 3070 (445)

AUCinf (ng/mL)
Day 1 NCe 3300 (997) 5090 (467)
Day 8 NCe NCe 3270 (488)

t1/2
Day 1 NCe 4.60 (2.59) 3.03 (0.01)
Day 8 NCe NCe 2.51 (0.07)

CL (L/hour)
Day 1 NCe 76.7 (9.6) 123 (19.8)
Day 8 NCe NCe 192 (16.3)

Vss (L)
Day 1 NCe 493 (120) 573 (103)
Day 8 NCe NCe 781 (24.7)

Cmax/dose (ng/mL/mg)
Day 1 1.54 (0.007) 2.15 (0.085) 1.52 (0.148)
Day 8 NCe 1.64 (0.177) 1.19 (0.064)

AUClast/dose (ng/mL/mg)
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Supplementary Table 3.Summary of AEs in the Phase 2a Study

Category Placebo (n ¼ 18) TAK-101 (n ¼ 16)

Number of patients with an AE 18 (100.0) 16 (100.0)

Number of patients with grade 3 (severe) AE 2 (11.1) 1 (6.3)

Number of patients with drug-related AE 6 (33.3) 12 (75.0)

Number of fatal events (deaths) 0 (0.0) 0 (0.0)

Number of patients with serious AEs 0 (0.0) 0 (0.0)

Number of patients with AE leading to withdrawal 0 (0.0) 0 (0.0)

NOTE. All data are n (%).
AE, adverse event

Supplementary Table 2.Continued

Part B: repeated ascending doses

Parameter

TAK-101 doseg

2 mg/kg (n ¼ 2) 4 mg/kg (n ¼ 2) 8 mg/kg (n ¼ 2)

Day 1 6.32 (3.90) 12.0 (1.34) 7.45 (1.20)
Day 8 NCe 6.39 (4.22) 4.92 (0.38)

AUCinf /dose (ng/mL/mg)
Day 1 NCe 13.2 (1.63) 8.24 (1.30)
Day 8 NCe NCe 5.24 (0.44)

NOTE. Data are mean (SD) unless otherwise specified.
AUCinf, area under the concentration–time curve from time zero extrapolated to infinite time; AUCinf/dose, AUCinf corrected for
dose; AUClast, area under the concentration–time curve from time zero to time of the last measurable concentration; AUClast/
dose, AUClast corrected for dose; Cmax, maximum drug concentration; Cmax/dose, Cmax corrected for dose; CL, total body
clearance; NA, not applicable; NC, not calculated; SD, standard deviation; t1/2 , terminal elimination half-life; Tmax, time of
maximum drug concentration; Vss, steady-state volume of distribution.
aInfusion durations were 0.5 hours for patients in the 0.5, 1, 2, and 4 mg/kg dose groups. The infusion durations for the 3
patients in the 8 mg/kg dose group were 0.5, 2.0, and 2.62 hours, respectively.
bFor the 8 mg/kg dose group, values for the patient who received less than 15% of the scheduled dose are not included in the
pharmacokinetic parameter summary statistics.
cNA: the duration of infusion varied by more than 25% for the patients in the 8 mg/kg group.
dMedian (minimum–maximum).
eNC: parameter was not estimable for more than 1 patient.
fn ¼ 2.
gThe average duration of infusion was 2.9 hours across dose groups (range: 2.7–3.2 hours).
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Supplementary Table 4.Labeled Antibodies Used for Time-of-Flight Mass Cytometry Staining

Target Clone Mass label Fluidigm catalog number

CD8a RPA-T8 141Pr Custom

CD19 HIB19 142Nd 3142001B

CD123 (IL-3R) 6H6 143Nd 3143014B

CD38 HIT2 144Nd 3144014B

CD4 RPA-T4 145Nd 3145001B

IgD IA6-2 146Nd 3146005B

CD11c Bu15 147Sm 3147008B

CD274 (PD-L1) 29E.2A3 148Nd 3148017B

CD25 (IL-2R) 2A3 149Sm 3149010B

CD138 DL-101 150Nd 3150012B

gdTCR 11F2 152Sm 3152008

CD303 (BDCA2) 201A 153Eu 3153007B

CD3 UCHT1 154Sm 3154003B

CD56 (NCAM) B159 155Gd 3155008B

Integrin a4 9F10 156Gd Custom

CD194 (CCR4) L291H4 158Gd 3158032A

CD197 (CCR7) G043H7 159Tb 3159003A

CD14 RMO52 160Gd 3160006B

CD152 (CTLA-4) 14D3 161Dy 3161004B

Integrin b7 FIB504 163Dy Custom

Integrin aE Ber-ACT8 164Dy Custom

CD16 3G8 165Ho 3165001B

CD27 L128 167Er 3167006B

CD199 (CCR9) L053E8 168Er 3168011A

CD304 (neuropilin-1) 12C2 169Tm 3169018B

CD45RA HI100 170Er 3170010B

CD20 2H7 171Yb 3171012B

CD1c L161 172Yb Custom

CD141 1A4 173Yb 3173002B

HLA-DR L243 174Yb 3174001B

CD279 (PD-1) EH12.2H7 175Lu 3175008B

CD127 (IL-7Ra) A019D5 176Yb 3176004B

CD45 HI30 89Y 3089003B

BDCA, blood dendritic cell antigen; CTLA, cytotoxic T-lymphocyte-associated protein; HLA-DR, human leukocyte antigen –

DR isotype; Ig, immunoglobulin; IL, interleukin; NCAM, neural cell adhesion molecule; PD-1, programmed cell death protein 1;
PD-L1, programmed death-ligand 1; TCR, T-cell receptor
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