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factor-α (TNFα)- induced nuclear translocation in the RCDII 
lines from P4, with a c.102_103insGG/p.G35 frameshift in 
TNFAIP3/A20, and from P10, with loss of one TNIP3 allele, 
when compared with the P8 cell line, with wild- type alleles for 
these genes (online supplemental figure 6).

Altogether, these data indicate that RCDII- cells contain highly 
recurrent mutations in the JAK1- STAT3 and NF-κB pathways 
that result in their intrinsic activation and/or enhanced respon-
siveness to extrinsic inflammatory stimuli.

The oncogenic signatures of EATL and RCDII largely overlap 
and are dominated by JAK1-STAT3 mutations
EATL can complicate RCDII and, thereby, share the same clonal 
origin as RCDII IEL3 (RCDII- EATL) but it can also develop in 
CeD patients without RCDII (‘de novo’ EATL). Prognosis of 
EATL is better in the latter case,7 raising the possibility that 
distinctive oncogenic events underlie these two entities. To 
address this hypothesis, we compared TNGS results in biopsies 
obtained from RCDII- EATL (n=11) and de novo EATL (n=8).

Figure 4 Mutational profiles of enteropathy- associated T- cell lymphoma (EATL) complicating type II refractory coeliac disease (RCDII) or developing 
de novo in coeliac disease. Heatmap summarises mutations determined by targeted next- generation sequencing (TNGS) and targeted amplicon 
sequencing (TAS) for individual patients (column) with de novo EATL (left block) or RCDII- EATL (right block). Genes (row) are grouped by pathway or 
function. Mutations are colour coded according to the type and upper header bar shows sample ID and colour codes for gender as indicated in the 
legend below. Horizontal bar graph illustrates frequency of mutations per gene with adjacent absolute numbers for all EATL, de novo EATL and RCDII- 
EATL. Vertical bars illustrate absolute counts of mutations per patient. P values are shown for categorical differences between de novo EATL and 
RCDII- EATL as assessed via Fisher’s exact test.
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Overall, the mutational profile of both RCDII- EATL and de 
novo EATL largely overlapped with that of RCDII, including 
recurrent GOF mutations at the JAK1 p.G1097 hotspot and 
in the SH2 domain of STAT3, as well as SOCS1 frameshift or 
nonsense mutations in two patients without JAK1 or STAT3 muta-
tions (figure 4). Further, 37% of EATL (9/19) showed multiple 
JAK1 or STAT3 mutations with up to three mutations in two 

patients and JAK1 and STAT3 double mutations in 6 out of 19 
(32%) patients. Other mutations frequently found in EATL were 
in KMT2D (37%), TET2 (32%), DDX3X (32%), TNFAIP3 (28%) 
and POT129 (26%). Interestingly, the mean number of mutations 
detectable by TNGS and TAS were comparable between de novo 
EATL and RCDII- EATL (online supplemental figure 7). There 
were however some minor differences as all de novo EATL but 

Figure 5 Comparison of somatic mutations during transformation of type II disease coeliac disease (RCDII) into enteropathy- associated T- cell 
lymphoma (EATL). (A) Before and after plots show mean variant allele frequency (VAF) of individual mutations detected in whole biopsies of RCDII 
cases without (no EATL) or with EATL (EATL) for individual patients. Highlighted genes were detected in only one group (blue=no EATL, red=EATL). 
(B) Before and after plot summarises mean VAF of RCDII samples without (no EATL) or with EATL (EATL) in each patient; p value was calculated via 
paired two- tailed t- test.
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only 55% of RCDII- EATL showed at least one JAK1 mutation 
(p=0.045), while mutations in TNFAIP3 (p=0.036) were only 
found in RCDII- EATL.

We also compared RCDII- EATL (n=9) to autologous RCDII 
biopsies without evidence of EATL (figures 3A and 4). Most 
RCDII- EATL samples showed increased VAF in whole biopsies 
when compared with their non- EATL controls (figure 5). Strik-
ingly, JAK1- STAT3 and TNFAIP3/A20 mutations were never 
lost during progression from RCDII to EATL, supporting their 
founding or driving role in transformation. Of note, EATL in 
P4 showed particular expansion of a STAT3 p.E616G mutated 
clone (figure 5), a variant that was not detected in the autolo-
gous RCDII- cell line, pointing to the coexistence or emergence 
of various clones. When compared with autologous RCDII 
biopsies without EATL, RCDII- EATL samples contained addi-
tional pathogenic mutations in STAT3, SH2B3, JAK3, KMT2D, 
BCOR, ARID1A, SETD1B, PTPRC, PTPRD, NF1 and NOTCH1, 
suggesting that these newly acquired mutations represent driver 
events supporting RCDII transformation into EATL. More-
over, JAK1- STAT3 double mutations as well as TNFAIP3/A20 
mutations tended to predispose to EATL transformation (online 
supplemental figure 8). Definitive demonstration of the prog-
nostic value of these mutations to predict the risk of RCDII 
progression to EATL will however require analysis of more 
cases.

Overall, these data indicate that common mechanisms 
underlie lymphomagenesis in de novo EATL and RCDII- EATL, 
but with restriction of TNFAIP3/A20 mutations to RCDII- 
EATL, whereas JAK1 mutations were over- represented in de 
novo EATL.

The JAK1-STAT3 pathway is a potential therapeutic target in 
RCDII
Given the severe prognosis of EATL, identifying therapies that 
efficiently treat RCDII and block progression to EATL is indis-
pensable. RCDII lines were used as in vitro preclinical models 
to assess the therapeutic efficacy of drugs targeting the highly 
recurrent JAK1- STAT3 GOF mutations using ruxolitinib, which 
inhibits JAK1 and JAK2, and abrocitinib (PF-04965842), a 
specific JAK1 inhibitor.30 Their effect was compared with that 
of budesonide, a corticosteroid commonly used in RCDII31 and 
bortezomib, a proteasome inhibitor which has demonstrated 
efficacy in myeloma by modulating survival and apoptosis of 
malignant cells32 and which has also been shown to interfere 
with STAT3 signalling.33–35 Confirming and extending our 
published results in two distinct RCDII lines,10 both ruxolitinib 
and abrocitinib reduced proliferation, induced apoptosis and, 
simultaneously, inhibited STAT3 phosphorylation in all four 
RCDII- cell lines tested (figure 6A,B). These drugs, however, 
exerted comparable or even stronger effects in cultured control 
T- cells. Similarly, budesonide impaired survival and growth 
of both RCDII- cell and normal T- cell lines. Moreover, and 
in line with the lack of clinical response of P6 to budesonide, 
this drug had no effect on the RDCII line derived from intes-
tinal biopsies of P6. In contrast, the reversible 26S proteasome 
inhibitor bortezomib exerted proapoptotic and/or antiprolif-
erative effects on the 4 RCDII lines, while normal T- cell lines 
remained largely unaffected. Moreover, bortezomib was also 
able to inhibit STAT3 phosphorylation in the four RCDII lines 
(figure 6B).

Figure 6 Differential efficacy of candidate therapeutic drugs in type II refractory coeliac disease (RCDII) cell lines. (A) Bar plots show mean 
percentages±SD of flow cytometry- based assessment of annexin V+ (left column) and Ki67hi cells (right column) from four patients (n=3–5) and 
control CD3+ T- cells (n=14) after 72 hours of the indicated treatment; asterisks denote statistical significant change relative to untreated (dimethyl 
sulfoxide (DMSO)) condition; p values (****p<0.00001, ***p<0.001, **p<0.01, *p<0.05). (B) Representative western blots for pSTAT3, STAT3 and 
β-actin for RCDII- cell lines from four patients and T- cells as controls on 24 hours of treatment with indicated drugs or vehicle (DMSO).
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Overall, these functional studies emphasise the relevance of 
JAK1 inhibitors for the treatment of RCDII and EATL. They also 
reveal the capacity of the proteasome inhibitor bortezomib to 
eliminate malignant cells while concomitantly preserving normal 
T- cells.

DISCUSSION
This study, based on the largest cohort of RCDII and EATL 
patients to date, identifies JAK1 and STAT3 mutations in the 
vast majority of the 50 RCDII and 19 EATL studied, strongly 
supporting their driver role in CeD- associated lymphomagen-
esis. Almost all detected JAK1 and STAT3 variants have been 
reported as GOF mutations10 36 37 and, completing our previous 
report,10 additional RCDII- cell lines showed constitutive and/
or enhanced cytokine- driven phosphorylation of STAT3. 
Frequent deleterious mutations of the negative JAK- STAT regu-
lators and, notably, of SOCS1 in the rare cases without JAK1 
or STAT3 mutations, further stress the outstanding role of this 
pathway in CeD- associated oncogenesis. A role of the JAK- 
STAT pathway has already been highlighted in other intestinal 
lymphomas. Thus, recurrent JAK3 and STAT5 GOF mutations 
have been observed in monomorphic epitheliotropic intestinal 
T- cell lymphoma, a highly aggressive lymphoma that is not 
associated with CeD,17 38 39 and JAK2- STAT3 fusion transcripts 
associated with STAT5 activation have been reported in indolent 
intestinal CD4+ T cell lymphomas.40 We now show that JAK1 
and STAT3 GOF mutations are a hallmark of CeD- associated 
lymphomas. Moreover, the JAK1 p.G1097 hotspot identified 
in almost 50% of the cohort has been rarely reported except 
in ALK- negative anaplastic lymphomas (8%)36 including those 
developing on breast implants (18%).41 Its frequency is however 
less than in RCDII and EATL (50% and 68%, respectively). 
Together with data reported in a small number of EATL,17 39 
it suggests that JAK1 p.G1097 mutations may be a diagnostic 
marker for CeD- associated lymphomas. Interestingly, mutations 
in negative regulators of NF-κB were detected in almost all 
RCDII- cell lines or RCDII cells sorted from blood. They were 
detected less frequently in biopsies of RCDII and RCDII- EATL. 
Many alterations were copy number variations and may not have 
been detected by NGS in biopsies. The tumour- suppressive func-
tion of TNFAIP3/A20 is well described.23 The role of TNIP3, a 
partner of TNFAIP3/A20 in the ubiquitin editing complex,22 is 
much less known, but TNIP3 inversion was reported in one case 
of indolent intestinal CD4+ T cell lymphoma.42

CeD pathogenesis has been linked to cytokines such as IFNγ, 
IL-21 and IL-15 that trigger the JAK- STAT pathway.43 44 Some 
studies have also pointed to a potential role of NF-κB signal-
ling. Predisposing TNFAIP3/A20 and REL gene risk variants have 
been associated with CeD.45 TNFα, a potent activator of NF-κB, 
was shown to be produced by IEL46 and gliadin- specific CD4+ 
T cells and could promote the growth of RCDII lines in vitro.47 
Of note, NF-κB and STAT3 can cooperate to promote transcrip-
tion of their target genes,48 while NF-κB signalling can be limited 
by SOCS149 that was mutated in several patients. Mutations acti-
vating the JAK1- STAT3 and NF-κB pathways may thus synergise 
and, in conjunction with cytokines released in the inflamma-
tory CeD intestine, promote the clonal expansion of malignant 
RCDII cells as well as stimulate their autonomous production of 
cytokines and their cytotoxicity against epithelial cells,8 9 overall 
creating the vicious circle of a genotoxic inflammatory environ-
ment that favours genomic instability, enabling accumulation 
of more genetic aberrations and ultimately leading to transfor-
mation into EATL. Accordingly, other potentially oncogenic 

mutations were observed in epigenetic modifiers such as TET2,20 
KMT2D24 and in the translational regulator DDX3X.19

The overlap between the mutational fingerprints of individual 
RCDII cases and their corresponding EATL strongly supports 
the sequential model for EATL development through an inter-
mediate RCDII phase. Of note, JAK1- STAT3 double mutations 
tended to predispose to progression of RCDII to EATL (online 
supplemental figure 8), an observation in keeping with previous 
demonstration of a cooperative effect of STAT3 and JAK1 GOF 
mutations in malignant transformation.36 Despite minor differ-
ences, the mutational profile of de novo EATL and RCDII- 
EATL was very similar, suggesting comparable mechanisms of 
lymphomagenesis. Along this line, diagnosis of de novo EATL 
was made in all cases at the same time or shortly after CeD (data 
not shown). This observation, which is coherent with previous 
reports,50 further stresses the role of chronic inflammation in 
promoting EATL development. Overall, the much more severe 
prognosis of RCDII- EATL cannot be explained by a distinct 
mutational profile. An alternative hypothesis is that RCDII 
provides a reservoir of malignant cells with little sensitivity to 
chemotherapeutic regimens used in EATL (as they do not divide 
actively) from which relapse can develop.

Our results indicate that blockade of the JAK1- STAT3 pathway 
is one therapeutic option to inhibit the growth of malignant 
RCDII cells and prevent progression into EATL. Benefits and 
risks however require careful consideration. JAK1 inhibitors 
had a profound impact on RCDII cells but also on normal T- cell 
lines, which is in line with their known negative effect on the 
activation of cytotoxic lymphocytes, some of which may harbour 
antitumour function.51 Conversely, JAK inhibitors exert anti- 
inflammatory effects and may thereby help switch off the vicious 
circle that promotes CeD- associated lymphomagenesis, a benefit 
that could outweigh the risk of impaired tumour surveillance.52 
Interestingly, bortezomib, a drug approved for the treatment of 
multiple myeloma,32 selectively impaired the growth of RCDII- 
cell lines. As described in myeloma, inhibition of RCDII cells 
may result from the stabilising effect of bortezomib on proteins 
that stimulate apoptosis and inhibit cell- cycle progression53 but 
also on its inhibitory effect on STAT3 phosphorylation in RCDII 
cells.33–35 Therapies combining JAK1 inhibitors and bortezomib 
were shown to increase therapeutic efficacy in myeloprolifer-
ative neoplasia54 and may thus be worthy of consideration in 
RCDII. Mutations identified in epigenetic modifiers provide 
additional clues to design personalised treatments adapted to the 
mutational profile of individual RCDII cases and to minimise the 
risk of progression to EATL.

In conclusion, the mutational landscape of CeD- associated 
lymphoid malignancies points to convergent mechanisms driving 
lymphomagenesis in RCDII and EATL. Our results support a 
scenario in which the cytokines present in the chronically 
inflamed CeD intestine contribute to the clonal outgrowth of 
innate- like IEL carrying highly recurrent JAK1- STAT3 GOF 
mutations that synergise with mutations impairing NF-κB regu-
lation to foster transformation. Besides shedding new insight 
into the pathogenesis of CeD- associated lymphomagenesis, our 
work provides the rationale for new therapeutic strategies that 
may prevent RCDII progression to EATL and improve the prog-
nosis of these most severe complications of CeD.
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