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Recent studies show that aneuploidy and driver gene muta-
tions precede cancer diagnosis by many years1–4. We assess 
whether these genomic signals can be used for early detection 
and pre-emptive cancer treatment using the neoplastic pre-
cursor lesion Barrett’s esophagus as an exemplar5. Shallow 
whole-genome sequencing of 777 biopsies, sampled from 88 
patients in Barrett’s esophagus surveillance over a period of 
up to 15 years, shows that genomic signals can distinguish 
progressive from stable disease even 10 years before histo-
pathological transformation. These findings are validated on 
two independent cohorts of 76 and 248 patients. These meth-
ods are low-cost and applicable to standard clinical biopsy 
samples. Compared with current management guidelines 
based on histopathology and clinical presentation, genomic 
classification enables earlier treatment for high-risk patients 
as well as reduction of unnecessary treatment and monitoring 
for patients who are unlikely to develop cancer.

Early diagnosis of cancer is one of the best strategies to improve 
patient survival and decrease treatment-related side effects that 
contribute to poorer health; however, this strategy poses a risk of 
overtreatment6. Therefore, accurate biomarkers of early cancer 
progression are needed to stratify patients. Copy number (CN) 
alterations, although common in cancer, are rarely found in nor-
mal tissues, raising the question of whether these signals could help 
diagnose patients earlier.

This strategy can be tested in esophageal adenocarcinoma 
(EAC), which has a 5-year survival rate of less than 20%7. Its precur-
sor tissue is known as Barrett’s esophagus (BE); however, the risk 
for a patient with BE progressing to EAC is only around 0.3% per 
annum8. Current surveillance programs focus on the presence and 
grade of dysplasia in BE patients as determined by histopathologi-
cal examination of biopsies. Low- (LGD) and high-grade dysplasia 
(HGD) are used as surrogates for early cancer transformation and 
trigger intervention, commonly by endoscopic resection and radio-
frequency ablation (RFA)9,10. Additional risk factors for progression 
include increasing age, male gender, greater length of the BE seg-
ment and tobacco use at the initial evaluation, although these are 
not yet part of the clinical guidelines11.

Improvements in risk assessment have focused on identifying 
individual molecular biomarkers, particularly p53 expression12–16 
and DNA-methylation changes17,18. However, identification of 
mutational biomarkers for progression has been difficult, due to 
the low frequency of recurrent point mutations in either BE19 or 
EAC20,21. Instead, EAC and BE are characterized by early and fre-
quent genomic (CN and structural) instability20–24. As ongoing 
genomic instability leads, to a large extent, to clonal diversity, mul-
tiple investigations have focused on the heterogeneity and diversity 
of BE tissues25 as markers of higher risk26–29.

We investigated genome-wide CN instability as a marker for risk 
of progression using shallow whole-genome sequencing (sWGS; 
average depth 0.4×) in a retrospective, demographically matched, 
case–control cohort of patients (n = 88), with all available endos-
copy samples (n = 777) collected during clinical surveillance for BE 
(Fig. 1a). Shallow WGS was chosen as the protocol because it pro-
vides a genome-wide perspective on CNs and the level of genomic 
instability and has been optimized for use in formalin-fixed 
paraffin-embedded (FFPE) samples30.

CN patterns were examined at multiple levels of the esopha-
gus to understand how patients who progress differ from nonpro-
gressors. We observed that the genomes of individual progressive 
patients display a generalized disorder across the genomes that 
varies between samples and over time (Fig. 1b). In addition, CN 
changes were not confined to cytological atypia (for example, LGD, 
HGD), because similar profiles were observed for the nondysplastic 
BE (NDBE) samples (n = 518; Fig. 1c,d).

The CN information and a measure of overall complexity (see 
Methods and also Extended Data Fig. 1) were used to generate a 
crossvalidated, elastic-net-regularized logistic regression model of 
progression and classification, with the endpoint HGD or intramu-
cosal cancer (IMC; see Methods), and subsequently validated using 
an independent cohort of 76 patients (n = 213 samples), alongside 
an orthogonal validation of the Seattle BE Study SNP array samples 
(n = 1,272) from 248 patients31.

This model was designed to be independent of demographic risk 
factors11 because our cohort was matched for sex, BE segment length, 
age at diagnosis and smoking status (see Supplementary Table 1).  
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We used the area under curve (AUC) of the receiver operating char-
acteristic (ROC) to evaluate the model training performance. As 
the model included the diagnostic samples with the most extreme 
CN (for example, HGD and IMC), we additionally trained a model 
excluding these, and found that the AUC concordance was high 
(see Extended Data Fig. 2a), indicating that the model was not 
sensitive to extreme samples. Aggregating predictions either per 
endoscopy (mean or maximum sample predictions) or per patient 
(mean or maximum predictions excluding HGD/IMC samples)  
did not measurably increase the prognostic accuracy (see Extended 
Data Fig. 2b), suggesting that a single sample (for example, pooled 
four-quadrant biopsy) may be sufficient for prediction, which  
could be ideal for clinical application.

Using all sample predictions generated by the model we evalu-
ated the relative risk (RR) across the cohort. Those samples with the 
highest RR were more than 20× more likely to progress than average, 
whereas those with the lowest RR were 10× less likely (Fig. 2a). This 
information enabled us to calibrate risk classifications based on the 
enrichment of samples from progressor or nonprogressor patients to 
maximize the sensitivity of our classes: ‘low’ (probability (Pr) ≤ 0.3; 
sensitivity = 0.87, specificity = 0.65), ‘moderate’ (0.3 > Pr < 0.5) or 
‘high’ (Pr ≥ 0.5, sensitivity = 0.72, specificity = 0.82).

Samples from patients who progressed were classified as ‘high 
risk’ for progression independent of histopathology (Fig. 2b). Most 
importantly, CN profiles in NDBE samples that belonged to pro-
gressor patients were classified as high risk in 60.5% (104/172), 
whereas in nonprogressor patients 64.7% (224/346) of samples were 
classified as ‘low risk’.

The model was then used to predict and classify risks per sample 
for the validation cohort (76 patients, 213 samples). Of samples 
from nonprogressor patients, 78/142 (55%) were classified as low 
risk, and 55/71 (77%) of samples from patients who progressed were 
classified as high risk. As in the discovery cohort, high-risk classifi-
cation of progressor patient samples was largely independent of his-
topathology (Fig. 2c). Similarly, when we used our model to classify 
the historical Seattle study patient dataset (n = 248, samples = 1,272 
SNP array) we again find that samples from progressors are classi-
fied as high risk regardless of pathology (see Extended Data Figs. 3 
and 4). However, in this case the algorithm unsurprisingly suffers 
a loss of accuracy due to the differences in the methodology (see 
Supplementary Information for complete analysis and endpoint 
differences).

When sample classifications were plotted according to their spa-
tial distribution in the segment and time of collection in the clinical 
history, strikingly concordant patterns emerged. Most progressive 
patient samples are classed as high risk throughout the disease his-
tory, whereas nonprogressive patient samples are consistently low 
risk (Fig. 2d and see also Extended Data Fig. 5). This concordance 
is evident when we plot the highest risk at each time point per 
patient (Fig. 3a). For patients who progress, 50% (8/16) of endos-
copies had at least one sample classified as high risk ≥8 years before 

transformation. This classification is in accordance with current 
diagnostic guidelines that require only a single dysplastic sample to 
recommend treatment for a patient (Fig. 3b). Cases who lack early 
CN patterns of progression acquired these over the following years, 
leading to 78% (18/23) of endoscopies with at least one high-risk 
sample 1–2 years before HGD/IMC diagnosis.

More interesting were the patients who have not yet progressed  
but display a consistent pattern of high-risk endoscopies. Two patients 
were high risk in every sequenced sample, whereas the remain-
ing patients displayed a mix of risks at each time point (Fig. 2d),  
presenting what could be clonal diversity in very early progression 
to EAC (follow-up for these patients continues) and resulting in 
consistent high risk over time (Fig. 3a).

Statistical algorithms can be improved by increasing the size of 
the dataset. We therefore conducted subsampling of the discovery 
cohort with increasing numbers of patients and model training 
as described in Methods. With each increment in the number of 
patients the predictive accuracy of the model increased, reaching a 
(crossvalidated) AUC of 0.89 (specificity = 0.83, sensitivity = 0.82) 
when combining all discovery and validation patients (n = 164; see 
Extended Data Fig. 6), indicating that a larger knowledge bank of 
CN and progression data from BE will continue to improve the pre-
cision of patient stratification and the sensitivity of the model, by 
adding stronger statistical signals and accounting for broader bio-
logical variation.

Current guidelines for the management of BE focus on the length 
of the BE segment and the presence or absence of LGD/HGD in 
any biopsy sample taken during endoscopy32,33. Most of our patients 
were under treatment before the current treatment recommenda-
tions for LGD, and hence we can compare a set of recommendations 
based on the current guidelines33 with our model applying similar 
criteria, but overlaying our risk classifications (Fig. 4a). We applied 
these recommendations across our entire discovery cohort (88 
patients) and evaluated the first 2 endoscopies available excluding 
the endpoint (Fig. 4b and see also Supplementary Table 2). Using 
these criteria at the patient’s second surveillance endoscopy avail-
able (that is, several years before transformation), 54% of progres-
sor patients (19/35) would have received earlier treatment. Only five 
of these patients had repeat LGD diagnoses that could recommend 
earlier treatment or more aggressive surveillance under current 
pathology-based guidelines. Of progressor patients, 40% (14/35) 
would continue to receive yearly surveillance per current guidelines. 
The remaining 6% (2/35) would have been recommended reduced 
surveillance (3–5 years), but they would not have been diagnosed 
any differently under current guidelines because they were consis-
tently NDBE. One patient (13) may have had delayed treatment, but 
this would have occurred under current guidelines as well because 
no dysplasia was identified before transformation. Of patients who 
have not progressed, 51% (21/40) would have less frequent endos-
copies, 33% (13/40) would continue to receive yearly surveillance 
per current guidelines and 17% (7/40) would have had potentially 

Fig. 1 | CN profiles in BE vary over space and time. a, The case–control cohort design for the discovery patient cohort (n = 88). Nonprogressor (NP) 
patients had a minimum follow-up of 3 years; progressor (P) patients had a minimum 1-year follow-up; all patients start at nondysplastic Barrett’s 
esophagus (NDBE). Archival samples were collected from every available endoscopy over time, and along the length of the BE segment. b–d, Bar plots 
showing the adjusted CN values across the genome in 5-Mb windows, with relative (within each sample) gains shown in the positive y axis, and relative 
losses shown in the negative y axis. b, Genomic CN profiles of individual samples for an NP patient (top) and a P patient (bottom). The colors across the 
chromosomes in each sample are based on the location relative to the place it was taken in the esophagus (sample nearest to the esophageal–gastric 
junction at the bottom, up the BE segment), and the ideograms to the right of the plots show the samples that belong to a single endoscopy indicated by 
the year. Note the variability in the CN profiles within samples from the progressor patient in chromosomes 14 and 17, in contrast to the shared pattern 
across the NP patient in those regions. c,d, Distribution of relative CN values at each genomic segment across all samples in the NP and P patient groups. 
The gray in the middle is the median ± 1 s.d., indicating a probable diploid genome value. Purple and green show the range of relative gains and losses, 
respectively. In c all samples, regardless of pathology, are plotted and a large variation in the CN between P (n = 349) and NP (n = 424) patients is clear 
(that is, chromosomes 1, 4, 9 and 11). In d only NDBE samples from NP (n = 346) and P (n = 172) patient groups are plotted, and the P patients still show a 
much larger CN signal despite being pathologically indistinguishable.
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unnecessary treatment compared with current guidelines. Three 
patients from our discovery cohort are shown with the guidelines 
compared (Fig. 4c,d) as examples. Furthermore, the increasing sen-
sitivity of the model as samples are taken closer to the endpoint is 
evident, because the most progressive patients are recommended 

treatment at their penultimate endoscopy whereas none would be 
recommended longer surveillance times.

Recent evidence from the large-scale pan-cancer studies have 
suggested that genomic alterations are present many years before 
detectable disease1 in many cancer types. BE constitutes a known 
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pre-malignant condition with historical follow-up to test whether 
genomic medicine can contribute to early cancer detection. Previous 
studies of BE progression have shown that genomic and epigenetic 
changes are present before cancer progression and differ in patients 
who do ultimately develop cancer including: p53 expression12,14, 
DNA-methylation changes17,18, CN losses and copy neutral loss of 
heterozygosity26,28,34, and high clonal diversity27.

However, our analysis has shown that even highly variable CN 
profiles generated from the entire biopsy sample (not dissected or 
separated) translate into surprisingly stable predictions of a patient’s 
risk of progression. Furthermore, these single-sample predic-
tions were as accurate as aggregated data from multiple biopsies  
across the entire endoscopy or patient, showing that, despite high 
levels of divergence, there are common patterns of CN alterations 
indicative of progressive disease. This level of predictive power 
using a genome-wide algorithm is more challenging to achieve with 
a focused biomarker approach given the disease heterogeneity.

Perhaps most interestingly for biomarker investigations is that, 
although our statistical model selects some genomic regions of 

instability as features that are known to be early drivers of EAC 
(for example, TP53; see Extended Data Fig. 7), few other fea-
tures have any clearly associated tumor-suppressor genes or other 
cancer-related activity (see Supplementary Table 3). The heteroge-
neous nature of BE would partly explain the differences between 
the features our model selects as contributing to progression from 
those found in previous studies28; however, there is currently no 
clear functional explanation for most of the features identified. It 
is likely that the sum of many small changes and the breakdown of 
gene-regulatory control fuel oncogenicity.

Although the present study provides good evidence that 
genomic changes can predict future cancer risk, it is limited by 
the relatively small number of patients in the cohort, particularly 
patients who progress. Future studies that include more longitudi-
nal genomic data will improve the sensitivity and specificity esti-
mates of this model.

Ultimately, the combined use of low-cost genomic technolo-
gies, standard clinical samples and statistical modeling presented 
here is an example of how genomic medicine can be implemented 
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for early detection of cancer. This demonstrates that genomic risk 
stratification has a realistic potential to enable earlier interven-
tion for high-risk conditions, and at the same time reduce the 
intensity of monitoring and even reduce overtreatment in cases of  
stable disease.
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Fig. 4 | CN profiling facilitates earlier treatment and reduced monitoring. a, A schematic overview of surveillance guidelines based on the CN model 
risk classes. It is important to note that these guidelines would apply at each endoscopy, and that they use information from the previous endoscopy 
to determine the treatment or surveillance. b, This schematic used to characterize the discovery cohort patients after their second endoscopy (many 
years before dysplastic transformation); patients with only a single sequenced endoscopy before their endpoint are excluded for a total n = 76 patients 
(see Supplementary Table 2). The y axis provides the four recommendations in order from the schematic in a. All bars show the total number of patients 
for the specific recommendation split between nonprogressor (blue) and progressor (red) patients. In ‘3- to 5-year surveillance’ at the top, the blue bar 
indicates the number of nonprogressor patients who would have reduced treatment needs over time (n = 21), whereas, in the ‘RFA’ recommendation at 
the bottom, the red bar shows those progressor patients who would have had earlier intervention (n = 19). All patients in the middle two groups would 
receive the same surveillance as current guidelines recommend. c–e, Individual patients with each sample plotted at the time of endoscopy and location 
within the esophagus. Samples are colored based on their risk class, and shapes inside the tiles describe diagnosed histopathology of the sample. 
Relevant clinical information is included above each endoscopy plot, including the length of the BE segment and patient age at diagnosis. British Society 
of Gastroenterology’s (BSG) recommendations for each patient are based on the 2014 BE management guidelines33 and shown in gray text; the blue 
text indicates CN model recommendations from the schematic in a. EGD, esophagogastroduodenoscopy. Below the patients are the overall follow-up 
recommendations for the current guidelines and the CN model.
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Methods
Patient cohorts. A nested case–control cohort of 90 patients was initially 
recruited to the present study from patients who had been under surveillance 
for BE in the east of England from 2001 to 2016 for a total of 632 person-years. 
Permission to analyze existing clinical diagnostic samples was approved by the 
North West Preston Research Ethics Committee (REC 14-NW-0252). Cases 
comprised 45 patients who progressed from NDBE to HGD or IMC with a 
minimum follow-up of 1 year (mean ± s.d. = 4.6 ± 3.7 years). Controls were 
45 patients who had not progressed beyond LGD, starting from NDBE with a 
minimum follow-up of 3 years (6.7 ± 3.2 years). Cases and controls were matched 
for age, gender and length of BE segment (see Supplementary Table 1). Patients 
had endoscopies at intervals determined by clinical guidelines with four-quadrant 
biopsies taken every 2 cm of BE length (the Seattle protocol). One nonprogressor 
patient revoked consent before analysis and a second nonprogressor was later 
removed during analysis when multiple comorbidities affecting the esophagus 
were identified. A total of 777 samples were sequenced, with 773 passing our 
post-processing quality control. An additional 8 technical replicates from 2 
patients were sequenced for comparison, but only one set of replicates was 
included in the 773-sample set.

An independent, unmatched cohort of 75 patients was subsequently selected 
from patients under surveillance for BE in the east of England from 2001 to 2018 
for model validation. This cohort comprised 18 patients who had progressed from 
NDBE to HGD or IMC with a minimum follow-up of 1 year (6.1 ± 3.4 years) and 
58 patients who had not progressed beyond LGD starting from NDBE, with a 
minimum follow-up of 1.5 years (5.4 ± 3.0 years). The earliest available endoscopy 
samples subsequent to initial BE diagnosis were obtained to assess future risk. 
No diagnostic endpoint samples (for example, HGD or IMC) were included. 
This cohort was selected from available samples with no attempt to match 
demographics; however, no significant differences were found between the groups 
(see Supplementary Table 4). A total of 219 samples was sequenced from this 
cohort, with 213 passing our post-processing quality control.

Each sample from both cohorts was graded by multiple expert gastrointestinal 
histopathologists using current clinical guidelines for IMC, HGD, LGD, 
indeterminate (ID) and NDBE. A single biopsy graded as HGD or IMC was 
considered the endpoint for progression because patients were immediately 
recommended for treatment in the clinic. Since 2014, patients with LGD are 
also routinely treated with RFA, making prospective analysis of the real rate of 
progression difficult.

All patients had previously given informed consent to be part of the following 
studies: the Progressor study (REC 10/H0305/52, Cambridge South Research 
Ethics Committee), Barrett’s Biomarker Study (REC 01/149, Cambridge Central 
Research Ethics Committee), OCCAMS (REC 07/H0305/52 and 10/H0305/1, 
Cambridge South Research Ethics Committee), BEST (REC 06/Q0108/272, 
Cambridge Central Research Ethics Committee), BEST2 (REC 10/H0308/71, 
Cambridge Central Research Ethics Committee), Barrett’s Gene Study (REC 
02/2/57, the London Multi-centre Research Ethics Committee), Time & TIME 2 
(REC 09/H0308/118, Cambridge Central Research Ethics Committee), the NOSE 
study (REC 08/H0308/272, Cambridge Central Research Ethics Committee) and 
the Sponge study (REC 03/306, Cambridge Central Research Ethics Committee).

All patient and sample metadata were collected by study nurses at NHS 
Addenbrooke’s Hospital, UK and collated in Microsoft Excel 2016 spreadsheets.

Patient samples from the Seattle Barrett’s Esophagus Study31, which uses 
SNP arrays as an orthogonal measure of CN with an endpoint of EAC, were also 
included for further validation (see Supplementary Information).

Tissue sample processing and p53 immunohistochemistry. FFPE tissue samples 
from routine surveillance endoscopies were processed from scrolls, without 
microdissection because this protocol aims to be clinically relevant. Following the 
Seattle protocol for endoscopic surveillance, four-quadrant biopsies were taken 
every 1–2 cm of the BE length at each endoscopy per patient. At each 1- to 2-cm 
length the quadrant biopsies were pooled for sequencing as a single sample to 
ensure that sufficient DNA (75 ng) was present.

An additional section at each level of the Barrett’s segment (n = 88, n = 590 
sections) was stained (immunohistochemistry) using a monoclonal antibody 
for wild-type and mutant p53 (NCL-L-p53-D07, ready-use solution, protein 
concentration 10 mg ml−1) at the NHS Addenbrooke’s Hospital, UK on the Leica 
BOND-MAX system using Bond Polymer Refine Detection reagents (Leica 
Microsystems UK Ltd.), and graded by an expert pathologist as aberrant (absent or 
overexpressed) or normal35,36.

Shallow WGS pipeline. Single-end 50-bp sequencing was performed at a depth 
of 0.4× on the Illumina HiSeq platform. Sequence alignment was performed 
using BWA37 v.0.7.15, and pre-processing of the reads for mappability, GC 
content and filtering was performed with quantitative DNA-sequencing 
(QDNAseq)30 using 50-kb bins. Only autosomal sequences are retained after 
filtering due to low-depth mappability and GC correction. Samples were 
segmented for CN analysis using the piecewise constant fit function in the R 
Bioconductor ‘copynumber‘ v.1.16 package38. Input to this function was the 
GC-adjusted read counts from QDNAseq.

Post-processing quality control. Per-segment residuals were calculated and the 
overall variance across the median absolute deviation of the segment residuals 
was derived as a per-sample quality control measure. This measure was developed 
using an additional set of samples (n = 233), from fresh–frozen tumor tissue, 
FFPE cell-line tissue and FFPE patient samples. No relationship was found 
between sample age and data quality, and post-segmentation quality issues 
were not resolvable (see Extended Data Fig. 8). Therefore, samples with a mean 
variance of the segment residuals >0.008 were excluded from analysis.  
This excluded more than 73% (171/233) from the quality control samples 
across all sample types (FFPE patient, FFPE cell line, fresh–frozen tumor). In 
the discovery cohort we excluded 0.5% (4/777) of samples and in the validation 
cohort 2% (6/219) of samples.

Statistical methods. We encoded all CN data on a genome-wide scale by taking a 
per-sample weighted average across the segmented values per 5-Mb window, and 
mean standardizing per genomic window across the entire cohort. To evaluate 
chromosomal instability on a larger scale, we averaged the segmented values across 
chromosome arms and adjusted each 5-Mb window by the difference between 
the window and the arm. The resulting data were 589 5-Mb windows and 44 
chromosome arms. We additionally included a measure of genomic complexity 
(cx) by summing, per sample, the 5-Mb windows that had CN values 2 s.d.  
from the mean.

We performed elastic-net regression with the R glmnet39 package to fit 
regression models with varying regularization parameters. Fivefold crossvalidation, 
repeated 10×, was performed on a per-patient basis, removing all samples from 
20% of patients in each fold. This process was performed in three conditions: using 
all samples; excluding HGD/IMC samples; and excluding LGD/HGD/IMC. The 
two exclusion conditions were performed to assess the contribution of dysplasia to 
the classification rate of the model.

The model was additionally tuned on two parameters: (1) QDNAseq bin 
size and (2) elastic-net regression penalty, between 0 (ridge) and 1 (lasso). We 
assessed the crossvalidation classification performance of the model at multiple 
QDNAseq bin sizes and multiple regression penalties. We selected the final 
QDNAseq bin size by comparing the leave-one-patient-out predictions from the 
discovery cohort with the model predictions for the validation. This was done to 
minimize the batch errors in the raw data (see Extended Data Figs. 9 and 10). For 
the regression penalty parameter, all models had a crossvalidation classification 
rate of 72–75%. We therefore selected the parameter that limited the number of 
non-zero coefficients (n = 74) and was not full lasso (for example, 0.9). Coefficients 
determining the log(RR) of change stemming from a unit change were calculated 
for each genomic region selected.

Subsequently, a leave-one-patient-out analysis (excluding all samples of an 
individual) was performed to generate predictions for all samples from a single 
individual and estimate the overall model accuracy using the AUC of the ROC 
with the R pROC40 package.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Sequencing data and associated metadata that support the present study have been 
deposited in the European Genome-phenome Archive under accession number 
EGAD00001006033. The code and model that support these findings have been 
provided as an R package in a GitHub repository (https://github.com/gerstung-lab/
BarrettsProgressionRisk). Source data are provided with this paper.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Differences in genomic complexity. a, Per-sample variance in the genomic complexity (cx) values (y-axis) between samples from 
progressors (n = 424) and non-progressors (n = 349). Boundaries of the box indicate the first and third quartiles of the cx value, horizontal line indicates 
the median. All data points are shown. While the difference between non-progressors and progressors is significant in a two-sided Wilcoxon rank sum test 
(p-value=2.4 × 10−6), it only provides limited prognostic signal as the b, ROC curve shows. c, The total number of genomic windows (adjusted by samples 
per endoscopy) that are CN altered (y-axis) in the 5MB windows and chromosome arms, split by progressor (n = 41) and non-progressor (n = 43) patients 
at the initial endoscopy. Boundaries of the box indicate the first and third quartiles, of per-patient CN altered counts, center line indicates the median. All 
data points are shown. Progressors with only a diagnostic endoscopy are excluded. 5MB windows (two-sided Wilcoxon rank sum test, p-value=6 × 10−8) 
and chromosomal arms (two-sided Wilcoxon rank sum test, p-value 5.54 × 10−11) both show a significant difference in the number of CN alterations 
identified between the two groups at the initial endoscopy. d, Comparison of chromosome arm altered CN counts (y-axis) found at the initial vs the final 
endoscopies in progressors and non-progressors. The magnitude of the changes is significantly different between the patient groups (p-value=7 × 10−4, 
two-sided Wilcoxon rank sum test), demonstrating that alterations to the genomic landscape are apparent in low-resolution WGS data.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Model comparisons for best prediction accuracy. a, Shows the comparison of the model used in the analysis presented (trained 
on all samples, n = 773) versus a model which excludes the most extreme histopathological samples (excluding HGD/IMC, n = 711). We compare the 
accuracy of the ROC AUC using the best sensitivity threshold (Pr = 0.3) presented in Fig. 2a of the main paper. A model trained without use of the 
extreme samples shows no decrease prediction accuracy indicating that these samples are not driving the differences in the model. b, ROC AUC values 
describing the prediction accuracy for models trained on different sets of data and various aggregations of per-sample predictions also using the best 
sensitivity threshold (Pr = 0.3). The first set of bars provides the ROC values for the reference model per-sample predictions (n = 773). The following bars 
describe the ROC values for aggregated predictions on the same samples: mean and max prediction per endoscopy, mean and max prediction per patient 
(excluding the final HGD/IMC samples). The aggregated predictions do not differ from the per-sample predictions indicating that a single sample may be 
sufficient for accurate prediction. All error bars denote the 95% confidence interval for the sensitivity, specificity, and AUC at a threshold of Pr = 0.3.
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Extended Data Fig. 3 | External validation on Seattle Barrett’s Study SNP data. Predicting the Seattle Barrett’s Study SNP data using our sWGS CN 
model results in a lower AUC of 0.77 for all samples (including blood/gastric normals as non-progressor controls) a, Restricted to only BE samples (that is 
excluding normal), with our higher sensitivity threshold results in an AUC of 0.71 (sensitivity = 0.82, specificity=0.34) b, Overall, the progressor samples 
show the same pattern of risk classification that the sWGS samples did with high risk classifications occurring at a higher rate in progressive patients 
independent of pathology. The HGD group in the non-progressor patient group also indicates that our model would classify most of these as progressive. 
c, Compares ROC values for the SNP data using various additional criteria including: defining patients with HGD as progressed; excluding those with 
less than 1% of the genome altered (low SCA) and the whole-genome duplicated non-progressor patients (NP WGD); only within the baseline (T1) and 
penultimate endoscopy (T2) groups respectively. Demonstrating that the model improves as the samples are taken nearer to EAC diagnosis. All error bars 
denote the 95% confidence interval for the sensitivity, specificity, and AUC at a threshold of Pr = 0.3. d, Plots the mean ratio of the genome altered (y-axis) 
versus the computationally derived purity value (x-axis) for all timepoint-merged biopsies versus the blood/gastric normal samples. None of the normal 
samples have more than 1% of the genome altered, and all are >90% purity. Given the issues with assessing very pure, mostly diploid samples, those 
samples in blue are excluded from the ROC analyses as indicated.
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Extended Data Fig. 4 | Model trained on only SNP data. a, Cross-validation classification accuracy at each elastic-net penalty value (penalty = 0 had no 
non-zero coefficients) for the merged (see Supplementary Information Methods) samples (n = 490) the light blue bar is the penalty value used in the 
sWGS model and is used for comparison. The numbers on the bars indicate the number of coefficients selected under the given penalty, coefficients in 
parentheses are those that are stable across 75% of the folds. Error bars show the mean classification accuracy ± s.e.m. a, Volcano plot for the (CVRR) 
value versus coefficient value for the 27 coefficients from the SNP data trained model. Compared to the coefficients from the sWGS model the (CVRR) 
values (for example coefficient of variation for the relative risk, see Supplementary Table 3 for definition) are much lower.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Per-patient risk heatmaps. Samples from the discovery cohort (n = 773) for each progressor patient (n = 45) in a, plotted by the 
time prior to the final endoscopy (x-axis, endpoint=0) and esophageal location from the sample closest to the esophageal-gastric junction at the bottom 
up the length of the BE segment, or as many samples as were available for sequencing (y-axis). Each sample is colored by their risk class with shapes inset 
for each pathology grade. Non-progressor patients are shown in b, (n = 43). These correspond to the mini heatmaps in the main paper Fig. 2.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | increasing numbers of patients improves accuracy. Analysis showing the potential for improvement by training the model with 
increasing numbers of patients (x-axis) from the discovery cohort (green and orange bars), combining the discovery and validation cohorts (dark purple 
bar), and combining all sWGS (discovery and validation) data with the SNP data from the Seattle BE Study (pink bars). In each model we assessed the 
a, cross-validation accuracy, the b, number of coefficients selected by the model, and finally the c, AUC for a leave-one-out analysis. The green bars 
are all increasing numbers of patients used in training a model from the discovery cohort (error bars are the mean ± s.e.m. from repeating each training 
10 times with randomly selected patients), the orange bar represents the full discovery cohort, the purple bar is the combined discovery and validation 
(n = 164) cohorts, and the pink bars are the combined sWGS and SNP patients (n = 413).The discovery and validation (all sWGS data) displays consistent 
improvement in accuracy (0.57 to 0.75) and AUC (0.7 to 0.89) as the number of patients increases. Including the SNP data results in no improvement 
despite the increased number of patients indicating that the sWGS data alone provides more accurate prognostic information. d, Shows the classification 
rate per-sample across all 164 patients in the discovery and validation cohorts when we use a model trained on all samples (n = 986). An overall 
improvement in accuracy for both high and low risk patients is observed.
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Extended Data Fig. 7 | Cancer risk in relation to p53 iHC per sample. a, Bars show the proportion of aberrant p53 IHC stained samples separated by 
pathology in samples from progressive patients. The purple bars indicate the percentage of aberrant samples for each pathology. b, The CN plot from the 
main paper Fig. 2c zoomed in to chromosome 17 with additional bars shown for the arm-level gains (purple) or losses (green). The blue/yellow outline 
boxes show the genomic regions that are predictive features of the model. The blue box indicates a loss of 17p arm, while the yellow indicates gain of the 
17q arm. Tumor suppressor genes or oncogenes are indicated at their chromosomal location at the bottom of each plot.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Exemplar raw data plots for quality control. Raw data (red dots) after QDNAseq processing and pcf segmentation (green 
rectangles), y-axis is the relative GC-adjusted CN value and the x-axis is chromosomal position. The mean absolute deviation (MAD) of the observed 
(red) versus expected (green) segments was calculated and the variance across the entire sample used to develop a quality cutoff. a, Shows a 
post-segmentation plot from a cell-line pellet processed into an FFPE block. The wide variance of the raw (red) points results in scattered segmentation 
(green) high sample mean(MAD) value of 0.015. b, Shows the raw segmented plot from a fresh-frozen EAC tumor. Clear CN alterations can be observed 
(that is chromosomes 8 and 13). c, Contrasts two different raw data plots from the same FFPE sample in the discovery cohort sequenced as a technical 
replicate. The sample comes from a non-progressor patient and may have small CN changes that are clearly shared between the two.
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Extended Data Fig. 9 | Parameter tuning the model. a, Shows the cross-validation classification accuracy for each bin size (15 kb, 50 kb, 100 kb, 
500 kb) at each elastic-net penalty value. Error bars are mean ± s.e.m. of the classification accuracy for each alpha value and bin size. The classification 
accuracy shows a consistent decline for each bin size. b, Compares the AUC, true positive and false positive rate (TPR, FPR), for each bin size using 
leave-one-patient-out predictions for the discovery cohort at an elastic-net regression penalty of 0.9. Again, bin size 15 kb shows the best AUC at 
0.88, however 50 kb is highly concordant at 0.87. Error bars are the 95% confidence interval. c, Shows the AUC comparison at each bin size for the 
leave-one-patient-out discovery cohort predictions versus the validation cohort model predictions. At 50 kb the AUCs are 0.87 and 0.84 respectively 
while all other bin sizes show a much greater difference between the cohorts. Error bars are the 95% confidence interval.
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Extended Data Fig. 10 | Discretizing risks. Rate of sample classification by probability discretization per bin size for the a, discovery cohort (n = 773 
samples, 88 patients) leave-one-patient-out predictions b, and validation (n = 213 samples, 76 patients) predictions. These confirm that 50 kb is the best 
parameter to balance classification for type I and type II errors.
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Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Genome sequence alignment using BWA v0.7.15, genome build hg19.  Patient information directly collected from clinical reports and 
collated in MS Excel.

Data analysis Minimum versions of the following: R v3.5.2, R QDNAseq v1.14.0, glmnet v2.0-16, copynumber v1.16.0.  Processing and analysis provided 
in single package at https://github.com/gerstung-lab/BarrettsProgressionRisk

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The datasets generated during and/or analysed during the current study will be available in the EGA repository under accession EGAD00001006033. 

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences



2

nature research  |  reporting sum
m

ary
O

ctober 2018
For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Training data sample size was 90 patients, 45 patients that progressed to high grade dysplasia/cancer and 45 that did not over a period of 632 
person years. All available clinical samples were included for a total of 787 samples.  No power calculation was performed prior to selection. 
Due to the low rate of progression (0.3% per year) a nested case-control cohort was sufficient to  provide information on progression. This 
cohort was selected for availability of progressive patients with long-term follow-up. Non-progressor patients were selected to match. 

Data exclusions Two patients who did not progress to cancer were excluded: one patient revoked consent prior to analysis and the second patient was 
excluded when multiple co-morbidities affecting the esophagus were identified.  A quality control metric for sWGS copy number data was 
applied during processing irrespective of transformation status and subsequently samples that exceeded a pre-determined quality threshold 
were excluded.  

Replication We validated these findings on a separate cohort of 76 patients with 223 samples for which sWGS data was generated and on pre-existing 
SNP array data from the Seattle Barrett's Esophagus Study cohort (n=248 patients).

Randomization No randomization was used in the nested case-control study design. Patients were selected to match known demographic and clinical 
covariates (i.e. age, length of Barrett's), and by sample availability. This was done to control for the known risk factors. The validation cohort 
of 76 patients was selected entirely for sample availability and length of follow-up without trying to control for clinical covariates.

Blinding This study was not blinded. The patient status was used to develop a method to classify new samples. Validation patient samples were 
predicted using the method and compared to their clinical status.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used NCL-L-p53-D07

Validation This is a standard test performed by the histopathology department of the hospital on tissue sections from patients, using 
monoclonal antibody for wild-type and mutant p53 (NCL-L-p53-D07, ready use solution, protein concentration 10mg/mL) at the 
NHS Addenbrooke’s Hospital UK on the Leica BOND-MAXTM system using Bond Polymer Refine Detection reagents (Leica 
Microsystems UK Ltd., Milton Keynes, UK), and graded by expert pathologists.  No extra validation was performed.  

Human research participants
Policy information about studies involving human research participants

Population characteristics The training and validation cohorts were comprised of 37 female, and 125 male patients with a diagnosis age of 59.7-72 years. 
Non-progressive patients had been in surveillance for a minimum of 3 years, and progressive patients a minimum of 1 year with 
the initial diagnosis of non-dysplastic Barrett's Esophagus.

Recruitment Patients were recruited to this study from patients that had been under surveillance for Barrett's in the East of England from 
2001 to 2016.  
 
The patient data from the Seattle Barrett's SNP study was collected between 1988-2009 from patients with 2 endoscopic visits 
and sufficient tissue for analysis. A total of 248 patients were included.  
 
 The primary bias that will affect this study is that only patients with reflux symptoms are likely to undergo diagnostic endoscopy 
for Barrett's. It is unclear if this results in a different disease as we have no information on population level surveillance at this 
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time. Due to the links between Barrett's and EAC with poorer health behaviors (i.e. smoking, drinking) it is also possible that 
patients who consent to biomarker studies only do so if they feel that their behavior is not concerning. As a large proportion of 
our patients provided no specific information on smoking status or obesity we cannot rule this out. This could result in 
uncharacterized differences within the genome.

Ethics oversight Permission to analyze existing UK Barrett's clinical diagnostic samples was approved by the North West – Preston Research Ethics 
Committee (REC 14-NW-0252).  
 
The Seattle Barrett’s Esophagus Study was approved by the University of Washington Human Subjects Review Committee since 
1983 with reciprocity from the Fred Hutchinson Cancer Research Center (FHCRC) Institutional Review Board since 1994. FHCRC 
has an approved Federal Wide Assurance (#FWA000019200) with the Department of Health and Human Services. The IRB 
Registration number is IRB00005619. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	Genomic copy number predicts esophageal cancer years before transformation
	Online content
	Fig. 1 CN profiles in BE vary over space and time.
	Fig. 2 Genomic predictions of BE progression.
	Fig. 3 Cancer risk over time.
	Fig. 4 CN profiling facilitates earlier treatment and reduced monitoring.
	Extended Data Fig. 1 Differences in genomic complexity.
	Extended Data Fig. 2 Model comparisons for best prediction accuracy.
	Extended Data Fig. 3 External validation on Seattle Barrett’s Study SNP data.
	Extended Data Fig. 4 Model trained on only SNP data.
	Extended Data Fig. 5 Per-patient risk heatmaps.
	Extended Data Fig. 6 Increasing numbers of patients improves accuracy.
	Extended Data Fig. 7 Cancer risk in relation to p53 IHC per sample.
	Extended Data Fig. 8 Exemplar raw data plots for quality control.
	Extended Data Fig. 9 Parameter tuning the model.
	Extended Data Fig. 10 Discretizing risks.




