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BACKGROUND & AIMS: Partially degraded gluten peptides
from cereals trigger celiac disease (CD), an autoimmune enter-
opathy occurring in genetically susceptible persons. Suscepti-
bility genes are necessary but not sufficient to induce CD, and
additional environmental factors related to unfavorable alter-
ations in the microbiota have been proposed. We investigated
gluten metabolism by opportunistic pathogens and commensal
duodenal bacteria and characterized the capacity of the produced
peptides to activate gluten-specific T cells from CD patients.
METHODS:Wecolonized germ-free C57BL/6micewith bacteria
isolated from the small intestine of CD patients or healthy con-
trols, selected for their in vitro gluten-degrading capacity. After
gluten gavage, gliadin amount and proteolytic activities were
measured in intestinal contents. Peptides produced by bacteria
used in mouse colonizations from the immunogenic 33-mer
gluten peptide were characterized by liquid chromatography
tandemmass spectrometry and their immunogenic potentialwas
evaluated using peripheral blood mononuclear cells from
celiac patients after receiving a 3-day gluten challenge.
RESULTS: Bacterial colonizations produced distinct gluten-
degradation patterns in the mouse small intestine. Pseudo-
monas aeruginosa, an opportunistic pathogen from CD patients,
exhibited elastase activity and produced peptides that better
translocated themouse intestinal barrier.Paeruginosa�modified
gluten peptides activated gluten-specific T cells from CD patients.
In contrast, Lactobacillus spp. from the duodenum of non-CD
controls degraded gluten peptides produced by human and
P aeruginosa proteases, reducing their immunogenicity.
CONCLUSIONS: Small intestinal bacteria exhibit distinct gluten
metabolic patterns in vivo, increasing or reducing gluten peptide
immunogenicity. This microbe�gluten�host interaction may
modulate autoimmune risk in genetically susceptible persons and
may underlie the reported association of dysbiosis and CD.

Keywords: Celiac Disease; Gluten Metabolism; Intestinal
Microbiota; Intestinal Inflammation.

luten-related disorders are increasingly prevalent
1
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Gconditions that encompass all diseases triggered
by dietary gluten, including celiac disease (CD), a
FLA 5.4.0 DTD � YGAST60562_proof
T-cell�mediated enteropathy, dermatitis herpetiformis,
gluten ataxia, and other forms of non-autoimmune re-
actions.2 Gluten proteins, predominantly gliadins in wheat,
are resistant to complete degradation by mammalian en-
zymes, which results in the production of large peptides
with immunogenic sequences, such as the 33-mer in
a-gliadin. Overall, this specific peptide contains 6 copies of 3
different epitopes (PYPQPQLPY, PQPQLYPQ, PFPPQPQLPY)
to which most celiac patients react.3,4 Partially digested
gluten peptides translocate the mucosal barrier and are
deamidated by human transglutaminase 2 (TG2), the CD-
associated autoantigen.5 This process converts glutamine
residues to glutamate and increases peptide binding affinity
to HLA-DQ2 or DQ8 heterodimers in antigen-presenting
cells, initiating the T-cell�mediated inflammation charac-
teristic of CD.6 Up to 40% of most populations express the
susceptibility genes for CD; however, only 2%�4% will
develop disease, possibly due to additional unknown envi-
ronmental triggers.7 As with other autoimmune and in-
flammatory diseases, intestinal dysbiosis characterized by
abundance of Proteobacteria and decreases in Lactobacillus
has been described in some CD patients.8–10 There is little
mechanistic insight regarding the association between dys-
biosis and gluten-specific T-cell responses, and the func-
tional relevance of these associations in CD remain unclear.

The human gastrointestinal tract is colonized by bacteria
with in vitro gluten-degrading capacity.11,12 This has
prompted the hypothesis that bacteria could reduce gluten
immunogenicity by producing enzymes that effectively
cleave proteolytic-resistant sequences in gluten peptides.13

Here we show a complex scenario in which gluten
� 19 August 2016 � 6:13 pm � ce
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metabolism in the small intestine of gnotobiotic mice is
differentially affected by opportunistic pathogens and
commensal bacteria. We demonstrate that Pseudomonas
aeruginosa, isolated from the duodenum of CD patients,
produces, through its elastase activity, a multitude of pep-
tides that activate gluten-specific T cells in HLA-DQ2.5þ CD
patients. Conversely, Lactobacillus spp from healthy sub-
jects, degrade P aeruginosa�modified peptides and
decrease their immunogenic potential. We identify a
microbe�dietary�host interaction that may modulate
autoimmune risk in genetically susceptible persons and that
could be targeted to reduce the rising incidence of these
conditions.
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Materials and Methods
Mice

C57BL/6 germ-free mice were generated by axenic 2-cell
embryo transfer technique, as described previously,14 and
maintained in flexible film isolators at the McMaster University
Axenic Gnotobiotic Unit. Germ-free status was evaluated
weekly by a combination of culture and culture-independent
techniques.14,15 We used mice colonized with an 8 strain-
murine microbiota (altered Schaedler flora [ASF])16 as con-
trols. All mice had unlimited access to a gluten-free autoclaved
mouse diet (Harlan, Indianapolis, IN) and water. All experi-
ments were carried out in accordance with the McMaster
University animal utilization protocols.

Origin of Bacterial Strains Used
We previously sequenced and isolated a collection of bac-

terial strains with in vitro gluten-degrading capacity from the
small intestine of CD patients and non-celiac controls.17,18

Briefly, duodenal biopsies were incubated in specific gluten
media (MCG-3)11 for 48 hours under anoxic and micro-
aerophilic conditions. Bacteria were selected based on pro-
duction of a proteolytic halo and lack of growth in the same
media without gluten. Most of the strains were classified within
the phylum Firmicutes (88%), mainly from the genera Lacto-
bacillus. Strains were also classified into Actinobacteria (8%),
Proteobacteria (3%), and Bacteroidetes (1%).17 For the exper-
iments in this study, 3 bacterial groups of interest were chosen
(Supplementary Table 1). P aeruginosa X-46.1 was selected as
an opportunistic pathogen only isolated from CD patients,17

and a member of Proteobacteria, a group previously associ-
ated with CD.8–10 Staphylococcus spp was selected because al-
terations in this group have been described in CD patients.19

Lactobacillus spp from healthy subjects were selected because
it constitutes a core resident group in the human small intes-
tine18,20 that is involved in gluten metabolism in vitro11 and is
altered in CD patients.21,22

16S Sequencing
DNA was extracted from small intestinal samples of colo-

nized mice as described previously.23 Extracted DNA under-
went amplification for the hypervariable 16S ribosomal RNA
gene v3 region and sequenced on the Illumina MiSeq platform
(Illumina, San Diego, CA). Generated data were analyzed as
described previously. Briefly, sequences were trimmed using
FLA 5.4.0 DTD � YGAST60562_proof
Cutadapt software, version 1.2.1, aligned using PANDAseq
software, version 2.8, operational taxonomic units selected via
AbundantOTU, and taxonomy assigned against the Greengenes
reference database.24,25

QPQLPY-Peptide Quantification
The amount of QPQLPY-peptide, a key motif in the major

immunogenic epitope within the 33-mer peptide from
a-gliadin, was measured with the competitive G12 ELISA
GlutenTox Kit (Biomedal, Spain) according to the manufac-
turer’s instructions.26 For animal studies, total small intestinal
content was flushed at sacrifice with 3 mL extraction solution
provided by the kit.

Degradation of QPQLPY Peptides by
Intestinal Washes

Intestinal contents were collected from colonized mice at
sacrifice and diluted 1:5 with phosphate-buffered saline and
incubated at 37�C with 7 mg pepsin-trypsin (PT)-gliadin for 30
minutes, 2 hours, and 4 hours. After incubations, remaining
QPQLPY-peptides were quantified by G12 antibody in ELISA
GlutenTox Kit.26

Cleavage of Gluten-Derived Tripeptides
Peptidase activity against gluten-derived tripeptides was

performed as described previously.27 Five synthetic
analogs—Z-YPQ-pNA, Z-QQP-pNA, Z-PPF-pNA, Z-PFP-pNA, and
Z-QPQ-pNa—were chosen as representative gliadin-derived
substrates (Biomatik). Twenty millimolars of each peptide
was incubated with the small intestinal washes of P aeruginosa-,
Lactobacillus spp- or Staphylococcus spp-colonized mice, or with
single bacteria cell cultures at the same concentration found in
the small intestine of mice (104 colony-forming units [CFU]) in
50 mM ammonium bicarbonate buffer (pH 8.0). Enzyme activity
was determined by the proteolytic removal of the para-
nitroanilide group, which was monitored spectrophotometri-
cally at 405 nm.

Proteolytic Activity in Gluten Media
Degradation of gluten proteins in solid media was measured

using bioassays on agar plates containing 1% gluten.28 Small
intestinal contents of mice were diluted 1:5 with phosphate-
buffered saline and incubated at 37�C in gluten-agar media
for 24 hours. Plates were evaluated by measuring the diameter
of the halo formed. Trypsin diluted in saline was used for
construction of a standard curve.

Liquid Chromatography Tandem
Mass Spectrometry Analysis of
33-Mer�Derived Peptides

Degradation of 33-mer peptide was performed using liquid
chromatography tandem mass spectrometry (LC-MS/MS). The
reaction mixtures (100 mL) containing 10 mL bacterial culture
(104 CFU) and 60 mM of the 33-mer peptide in phosphate-
buffered saline (pH 7.3), were incubated at 37�C for 4 hours.
Reactions were stopped by incubation at 100�C for 10 minutes,
and resultant products subjected to LC-MS/MS. LC-MS/MS data
were collected using a Bruker AmazonX ion trap mass
� 19 August 2016 � 6:13 pm � ce
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spectrometer coupled with a Dionex UltiMate 3000 HPLC sys-
tem, equipped with a Luna C18 column (150 mm � 4.6 mm;
Phenomenex, Torrance, CA) for analytical separations, running
acetonitrile with 0.1% formic acid and ddH2O with 0.1% formic
acid as the mobile phase at a flow rate of 1.2 mL/min. Putative
gliadin peptides were identified by comparison of LC-MS/MS
chromatograms from samples with gliadin to gliadin-free con-
trols. Peptides were confirmed and annotated by manual MS/
MS sequencing, assisted by iSNAP LC-MS/MS peptide frag-
mentation analysis software.29

Gluten Challenge in Crohn’s Disease Patients
Patients with biopsy-proven CD (n ¼ 20) expressing the

most common susceptibility genotype HLA DQ2.5þ and in
clinical, serologic, and histologic remission on a gluten-free diet,
were recruited (Supplementary Table 2). Gluten challenge was
performed as described previously.30 Briefly, four 50-g slices of
standard gluten-containing wheat bread (total approximately
10 g gluten) were consumed in divided doses daily for 3 days.
Blood sampling was done in the morning before (day 0) and 6
days after commencing the gluten challenge (day 6).

ELISpot Assay
Interferon-gamma ELISpot assays (Mabtech, Cincinnati, OH)

were performed as described previously.30 Briefly, peripheral
blood mononuclear cells (PBMCs) were isolated from hepa-
rinized whole blood using Ficoll density-gradient centrifuga-
tion. Fresh or cryopreserved PBMC were incubated overnight
with or without native or deamidated gliadin, peptides, or with
tetanus toxoid (CSL, Melbourne, Australia) and
phytohemagglutinin-L (Sigma-Aldrich, St. Louis, MO) as positive
controls. Spot-forming units (SFU) in individual wells were
counted using an automated ELISPOT reader. Wells showing
>10 SFU and >3� the SFU counted in wells containing PBMCs
incubated with medium alone were regarded as positive. SFU
were adjusted to 1 million PBMCs plated to enable
comparisons.

Peptide Translocation in Mice
Permeability studies were assayed in vitro by Ussing

chamber technique, as described previously31 (World Precision
Instruments, Sarasota, FL). We collected jejunal tissues from
specific pathogen-free C57BL/6 mice (n ¼ 10 per group), and 4
sections of jejunum from each mouse were assessed. Intestinal
permeability was stimulated by adding prostaglandin E2
(30 mM) to the serosal side of the chamber. Tissue conductance
and mucosal-to-serosal flux of the paracellular probe 51Cr-EDTA
were determined to check integrity of the tissue (data not
shown). PT-gliadin (1 mg/mL) and PT-gliadin further degraded
by bacteria (104 CFU 37�C for 4 hours) were added to the
mucosal size of the chamber. After 2 hours, samples were
collected from the serosal side of the chamber and gluten content
was quantified using the G12 antibody.26

Deamidation by Transglutaminase
The enzymatic activity of TG was checked by cross-linking

PT-gliadin or PT-gliadin incubated with P aeruginosa
X-46.1 for 4 hours (glutamine donors) with monodansyl
cadaverine (glutamine acceptor). One microgram crude gliadin
FLA 5.4.0 DTD � YGAST60562_proof
(Sigma-Aldrich) was incubated with 30 mmol/mL monodansyl
cadaverine (Covalab, Aachen, Germany) and 20 mg/mL pig TG
(Sigma-Aldrich) in 100 mL buffer containing 0.1 mol/L Tris$HCl,
0.15 mol/L NaCl, and 5 mmol/L CaCl2 (pH 8.8). Cross-linking
was allowed for 2 hours at 37�C. Fluorescence was measured
for 1 hour at lex 360 nm and lem 535 nm in the kinetic
mode.32

Screening of the Non-Redundant Transposon
Mutant Library of Pseudomonas aeruginosa

An unbiased genetic strategy to identify genes associated
with gluten metabolism was performed by using the available
non-redundant transposon mutant library of P aeruginosa
PA14.33 Briefly, 96-well microtiter plates containing 100 mL per
well of LB Q(with gentamicin at 15 mg/mL) were inoculated
directly from each plate of the frozen library using a 96-pin
replicator and incubated statically at 37�C overnight. Over-
night cultures were then transferred with a 96-pin replicator
(VP408; V&P Scientific, San Diego, CA) onto gluten agar plates
(1% of gluten) and incubated for 16 hours at 37�C. Transposon
mutants with growth on gluten-containing agar and no zone of
clearing around spotted colonies were used as stringent se-
lection criteria and reported in Supplementary Table 3.

Statistics
All the variables were analyzed with SPSS, version 18.0

(SPSS Inc, Chicago, IL). Categorical variables are expressed as
numbers and percentages, and quantitative variables as means
± SEM or medians as appropriate. Data are depicted as either
dot plots or bar graphs. The analysis of variance test was
performed to evaluate differences between various samples
with a parametric distribution and a Bonferroni correction was
applied. The Student t test was performed to evaluate the dif-
ferences between 2 independent samples or paired samples as
appropriate. Data with nonparametric distribution were eval-
uated with Kruskal-Wallis test for multiple samples, Mann-
Whitney test for 2 independent samples or Wilcoxon test for
2 related samples as appropriate. A P value <.05 was selected
to reject the null hypothesis by 2-tailed tests.
Results
Commensals and Opportunistic Pathogens
Contribute to Gluten Metabolism in the Gut

To investigate the small intestinal gluten metabolic
activity of the strains selected in this study, we colonized
germ-free C57BL/6 mice (n ¼ 13/group) with P aeruginosa
X-46.1, a proteobacteria isolated from the duodenum of
CD patients; Staphylococcus epidermidis X-35.1 and
Staphylococcus warneri X-18.3 from the duodenum of CD
patients; and Lactobacillus rhamnosus X-32.2 and Lactoba-
cillus fermentum X-39.3 from the duodenum of non-celiac
healthy volunteers (Supplementary Table 1). Mice were
colonized by oral gavage with 107 CFU of each strain and
kept on gluten-free chow for 1 week. Control groups
included germ-free mice and ASF-colonized mice, a bacterial
community selected for their dominance and persistence
in the normal microbiota of mice16 (Figure 1A). 16S
sequencing of ASF small-intestinal contents showed 90%
� 19 August 2016 � 6:13 pm � ce
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Figure 1. Q16Resident intestinal bacteria participate in gliadin degradation. (A) Experimental design of mouse colonization study.
(B) 16S sequencing of small-intestinal bacteria in ASF-colonized mice at the genus level. (C) Amount of gliadin measured by G12
antibody, detecting the immunogenic QPQLPY sequence within the 33-mer, in the small intestine of germ-free (GF), ASF-, P
aeruginosa-, Lactobacillus (Lacto)-, andStaphylococcus (Staph)-colonizedmice 2 hours after gliadin gavage. Data are represented
as mean ± SEM. (D) Degradation of 7 mg PT-gliadin by intestinal washes from germ-free, ASF-, P aeruginosa, Lacto-, and Staph-
colonizedmicebymeasuringQPQLPYpeptidesbyG12antibody.Dataare representedasmean±SEM. (E) Degradationofgluten in
solidmedia by intestinal washes ofGF, ASF-,P aeruginosa-, Lacto-, andStaph-colonized. Data represented asmean±SEM (units
of trypsin/gram of intestinal content). Bioassays show nonspecific degradation (clearing zone) in solid gluten media (white).
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Lactobacillus, 5% Parabacteroides, and other minority
groups (Figure 1B). One-week post-colonization, mice were
gavaged with 7 mg gliadin (n ¼ 8/group) or with saline
(n ¼ 5/group), and sacrificed after 2 hours. We recovered
104�105 CFU/g of intestinal content in each group.
Culture analysis14 confirmed the purity of colonizations
(Supplementary Materials). The content of QPQLPY pep-
tides, a repetitive immunogenic sequence within the 33-mer
peptide, was quantified by the G12 antibody.26 Colonization
with ASF or P aeruginosa decreased QPQLPY peptides con-
tent compared to germ-free mice, which exhibited a range of
values reaching a maximum of 12,000 ng/mL (Figure 1C).

To investigate whether these differences were due to
bacterial proteolytic activity, intestinal washes from colo-
nized mice were incubated with 7 mg partially degraded,
immunologically active PT-gliadin for 30 minutes, 2 hours,
and 4 hours. Small intestinal washes from ASF-colonized
mice degraded 50%�60% of QPQLPY-peptides within 30
minutes, while washes from germ-free mice degraded only
5%�10%. Intestinal washes from P aeruginosa�colonized
mice degraded >50% of peptides at 2 hours and washes
from Lactobacillus-colonized mice reached similar activity at
4 hours (Figure 1D). Intestinal washes from Staphylococcus-
colonized mice also degraded QPQLPY peptides, but this did
not reach statistical significance compared with germ-free
mice. Because gluten consists of a complex mix of proteins
with multiple amino-acid sequences, we next tested the
ability of small-intestinal washes to degrade whole
gluten. Unlike the G12 antibody that detects the QPQLPY
sequence, the bioassay assesses global gluten degradation
non-specifically. Using solid gluten media, we showed that
intestinal washes from P aeruginosa�colonized mice had
10� higher proteolytic activity than the rest of the groups
(Figure 1E). Thus, gluten degradation in the small intestine
results from the combined enzymatic action of mammalian
and resident bacteria.
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Small Intestinal Bacteria Induce Distinct Gluten
Metabolic Patterns

To investigate specific regions of gliadin cleavage by
bacteria, 5 tripeptides, representing sequences that appear
frequently in immunogenic gliadin peptides, were incubated
with intestinal washes of colonized mice. Single bacterial
strains that were used in colonizations were directly incu-
bated in vitro with the 5 tripeptides as controls. Intestinal
washes of all groups, including germ-free, cleaved YPQ and
PPF (Figure 2A), suggesting mammalian origin. Both P
aeruginosa X-46.1 and Staphylococcus strains degraded PPF
tripeptide and mice colonized with these bacteria showed
higher PPF degradation than germ-free mice. Thus, different
bacteria could have similar degradation profiles that are
conferred to mice colonized with these strains. Further-
more, direct incubation of L rhamnosus X-32.2 with tripep-
tides resulted in PFP breakdown. Similarly, incubation of
intestinal washes of Lactobacillus- and ASF-colonized mice,
which are dominated by Lactobacillus, resulted in PFP
breakdown. Intestinal washes of ASF-colonized mice
demonstrated PQP cleavage, not present in germ-free mice.
FLA 5.4.0 DTD � YGAST60562_proof
The results suggest there are specific bacterial cleavage sites
that influence the pool of gliadin peptides produced during
digestion.

To identify the capacity of specific human bacterial
isolates to cleave key immunogenic gliadin peptides, we
incubated bacteria with the human protease resistant
33-mer peptide that encompasses 6 overlapping immuno-
dominant HLA-DQ2.5�restricted 9-mer T-cell epitopes.3,6

Peptides generated from the 33-mer after incubation
with bacteria were determined using LC-MS/MS. Partial
scission of the 33-mer was detected with all tested bac-
teria. In isolation, Lactobacillus spp produced 3 peptides of
25�32 amino acids and Staphylococcus X-18.3 two large
peptides of 28 and 32 amino acids. P aeruginosa X-46.1
cleaved regions recognized by G12 antibody and produced
a variety of smaller 33-mer derived peptides (10�30
amino acids). P aeruginosa X-46.1 did not cleave QLP
regions in the 33-mer, which are associated with immu-
nogenicity6 (Figure 2B and C). These results indicate that
degradation of the 33-mer by bacteria generate gluten
peptides that maintain sequences with known immuno-
genicity in CD.30
Pseudomonas Aeruginosa-Modified Gluten
Peptides Are Immunogenic to Crohn’s Disease
Patients

The immunogenicity of 33-mer�derived peptides
released by P aeruginosa X-46.1 was then tested using
gluten-specific T cells induced in HLA-DQ2.5þ CD patients.
Ten CD patients underwent 3-day wheat gluten challenge to
induce gluten-specific T cells30,34 (Supplementary Table 2).
PBMCs were isolated from blood collected before and 6
days after commencing the challenge, when circulating
gluten-specific T cells are at their peak. A panel of 4 gluten
peptides generated after 33-mer incubation with P
aeruginosa X-46.1 were synthesized. Interferon gamma
ELISpot using these PBMCs was performed to validate the
immunogenicity of these peptides, as well as PT-gliadin and
the 33-mer peptide. Seven of 10 participants mounted a
significant interferon-gamma ELISpot response on day 6 to
the 33-mer, PT-gliadin, and all 4 P aeruginosa peptides
(Figure 3A). Responses were detected only after gluten
challenge and were generally dose-dependent and
enhanced by deamidation, consistent with a disease-
relevant T-cell response to deamidated gluten
(Supplementary Figure 1).

We next assessed the immunogenicity of PT-gliadin
incubated with either P aeruginosa X-46.1 or Lactobacillus
spp. Gluten-specific T-cell responses to these peptides were
performed using blood collected from CD patients
(Supplementary Figure 2). The median response to
PT-gliadin incubated with P aeruginosa X-46.1 was
increased compared with deamidated PT-gliadin alone, and
this was statistically significant after 8-hour incubation with
P aeruginosa X-46.1. In contrast, the median response to
PT-gliadin incubated with Lactobacillus spp was lower than
that to deamidated PT-gliadin at all incubation time points
(Figure 3B).
� 19 August 2016 � 6:13 pm � ce
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Figure 2. Intestinal bacte-
ria induce distinct gluten
metabolic patterns against
gliadin peptides. (A) Cleav-
age of gluten-derived tri-
peptides YPQ, QQP, PPF,
PFP, PQP by small intesti-
nal washes (SIW) of germ-
free (GF)-, ASF-, P
aeruginosa-, Lactobacillus-,
Staphylococcus-colonized
mice and by individual
bacterial strains. No
activity:(�), activity:(þ),
saturated activity:(þþ). (B)
Chromatogram generated
after 33-mer degradation
by P aeruginosa. Black
peak: remaining 33-mer.
Gray peak: peptides pro-
duced by P aeruginosa
degradation. (C) Degrada-
tion of the 33-mer by P
aeruginosa (blue arrows),
Lactobacillus (red arrows),
and Staphylococcus
(green arrows). Yellow
letters: G12 antibody epi-
topes. Underlined: TG2
epitopes. Blue letters:
Selected peptides for
gluten-specific T-cell stim-
ulation assays (*P < .05;
***P < .005).
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Pseudomonas Aeruginosa-Modified Gluten
Peptides Translocate Better the Epithelial
Barrier in Mice

Uptake of gluten peptides through the intestinal barrier
is necessary for the adaptive gluten-specific immune
response in the lamina propria.35 We measured trans-
location of immunogenic gluten peptides in mouse
jejunum by Ussing chambers.31 PT-gliadin or PT-gliadin
incubated with P aeruginosa X-46.1 was added to the
mucosal side of the chamber and QPQLPY peptide content,
as measured by G12 antibody, was determined on the
serosal side after 2 hours.26 Prior incubation of PT-gliadin
with P aeruginosa X-46.1 led to increased QPQLPY
peptide transport across the intestinal barrier, compared
with PT-gliadin alone (Figure 3C). This suggests that
FLA 5.4.0 DTD � YGAST60562_proof
P aeruginosa�modified gliadin peptides crossed the
mucosal barrier more efficiently and that bacterially
mediated gliadin degradation in the lumen may facilitate
immunogenic peptide translocation (Figure 3C). Gliadin
peptide deamidation in the lamina propria by the CD
autoantigen TG2 increases peptide affinity to HLA-DQ2þ

antigen-presenting cells.5 Different ratios of deamidation
after bacterial degradation could therefore be associated
with reduced immunogenicity. We found a similar TG2
deamidation ratio of PT-gliadin and PT-gliadin incubated
with P aeruginosa X-46.1 (Figure 3D). Thus, P aeruginosa
degradation produced shorter gluten peptides that were
often highly immunogenic, inducing responses in many
cases as strong as the parent 33mer. These shorter pep-
tides readily crossed the epithelial barrier.
� 19 August 2016 � 6:13 pm � ce
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Figure 3. Intestinal bacteria modify the immunogenicity of gluten peptides. (A, B) Interferon-gamma ELISpot in PBMCs har-
vested after gluten challenge of patients with CD in remission and ex vivo stimulated with (A) TG2-deamidated 33-mer-derived
peptides (P1, P2, P3, P4) produced after incubation with P aeruginosa X-46.1 or (B) pepsin-trypsin predigested (PT) gliadin
incubated with P aeruginosa X-46.1 or Lactobacillus and deamidated by TG2. Non-deamidated and TG2-deamidated 33-mer
or PT-gliadin were used as controls. Results are shown as SFU per 106 PBMC. Median response is represented by horizontal
lines. Each patient donor response (numeric code) is represented with characteristic shape and color dots. (C) Small intestinal
translocation of PT-gliadin and PT-gliadin incubated with P aeruginosa X-46.1 as measured by Ussing chambers. Results
shown as the transport of QPQLPY gliadin peptides from the mucosal to the serosal side over 2 hours. Data are represented as
mean ± SEM. (D) Cross-linking of PT-gliadin and PT-gliadin incubated with P aeruginosa for 2, 4, and 8 hours to monodansyl
cadaverine by TG2. Results are shown as maximum rates of cross-linking to monodansyl cadaverine (AU/min) (*P < .05;
***P < .005).
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Figure 4. LasB elastase is involved in gluten degradation by P aeruginosa. (A) Degradation of gluten proteins in solid media of
P aeruginosa PA14 wild-type and LasB mutant. Bioassays show nonspecific degradation (clearing zone) in solid gluten media
(white). (B) Cleavage of the 33-mer peptide (blue arrow) by P aeruginosa PA14 (red chromatogram) and LasB mutant (blue
chromatogram). Black arrows: peptides generated after 33-mer degradation by P aeruginosa PA14. Inset shows 33-mer after
LasB mutant incubation (black chromatogram) and after P aeruginosa PA14 incubation (gray chromatogram). (C) Germ-free
mice were colonized with P aeruginosa or LasB mutant for 1 week, after which they were gavaged with 7 mg gliadin. The
amount of the QPQLPY sequence in the small intestine of colonized mice was measured by G12 antibody 2 hours after gliadin
gavage. Data are represented as mean ± SEM. (D) Degradation of 7 mg pepsin-trypsin predigested (PT)-gliadin by intestinal
washes from P aeruginosa�colonized mice and LasB-colonized mice after 30 minutes, 2 hours, and 4 hours incubation. The
amount of the QPQLPY peptides after incubation was measured by G12 antibody. Data are represented as mean ± SEM.
(E) Degradation of nonspecific gluten proteins in solid media by intestinal washes of P aeruginosa�colonized mice and
LasB-colonized mice. Bar graph shows units of trypsin per gram of intestinal washes based on a standard curve with trypsin.
Data represented as mean ± SEM (*P < .05; ***P < .005).
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LasB Elastase Is the Main Protease Involved in
Gluten Metabolism by Pseudomonas aeruginosa

We first confirmed that P aeruginosa PA14, a human
clinical isolate,36 had an identical degradation pattern to P
aeruginosa X-46.1 against gluten and 33-mer (data not
shown). To identify genes associated with gluten meta-
bolism, we used the available non-redundant transposon
mutant library of PA14.33 Approximately 6000 transposon
mutants were tested for their ability to degrade gluten and
23 mutants consistently failed to generate a typical hydro-
lytic halo surrounding colonies on gluten-containing agar
(Supplementary Table 3). These mutants included LasB,
which encodes elastase, genes involved in the expression of
LasB elastase, and the type II system known for the secre-
tion of exoenzymes including LasB in P aeruginosa.37 Our
analysis supports that LasB was the main extracellular
FLA 5.4.0 DTD � YGAST60562_proof
protease involved in gluten degradation, and consistent with
these results, a LasB mutant had no peptidase activity
against the 33-mer compared with its wild-type parent
strain PA14 (Figure 4A and B). Colonization of germ-free
mice with this mutant showed a reduction of gluten and
gliadin degradation, and an increase of gliadin QPQLPY
peptides in the small intestine compared with P aeruginosa
X-46.1-colonized mice (Figure 4C�E), further supporting its
role in gluten metabolism in vivo.
Immunogenic Peptides Produced by
Pseudomonas aeruginosa Are Detoxified
by Lactobacillus spp

The intestinal microbiota is a dynamic community where
bacteria coexist with the host and with other bacteria.38
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Figure 5. Peptides modified by P aeruginosa can be degraded by Lactobacillus (Lacto). (A) Experimental design of mouse
colonization study. (B) Bacterial composition in the small intestine of mice colonized with Lactobacillus spp and P aeruginosa.
(C) Amount of QPQLPY-peptides measured by G12 antibody in the small intestine of P aeruginosa-, Lactobacillus- (Lacto-),
and P aeruginosaþLactobacillus-colonized mice 2 hours after gliadin gavage (7 mg). Data are represented as mean ± SEM.
(D) Degradation of 7 mg of pepsin-trypsin predigested (PT)-gliadin by intestinal washes from P aeruginosa-, Lacto-, and P
aeruginosaþLacto-colonizedmice bymeasuringQPQLPY peptides. Data are represented asmean±SEM (*P< .05; ***P< .005).
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Combinations of bacteria producing different proteases
could further affect gliadin degradation products. To
investigate this, we colonized C57BL/6 mice with P aeru-
ginosa X-46.1 and Lactobacillus spp. Controls were colo-
nized with P aeruginosa X-46.1 or with Lactobacillus spp.
One week post-colonization, mice were gavaged with 7 mg
gliadin and QPQLPY peptide content was measured in the
small intestine after 2 hours (Figure 5A). Mice were
successfully colonized with P aeruginosaþLactobacillus spp
(Figure 5B) and they had lower QPQLPY gliadin peptide
content compared with mice colonized with Lactobacillus
alone (Figure 5C). Incubation of intestinal washes from
colonized mice with PT-gliadin demonstrated that the
combination of P aeruginosa X-46.1 and Lactobacillus spp
enhanced QPQLPY degradation (70% in 2 hours) compared
with P aeruginosa- (55%) and Lactobacillus-colonized mice
(40%) (Figure 5D). We then analyzed whether Lactobacillus
reduced major immunogenic peptides generated by P
aeruginosa X-46.1. We sequenced the peptides produced by
P aeruginosa X-46.1. These peptides were then incubated
with Lactobacillus spp and analyzed by LC-MS/MS. Compared
with Lactobacillus spp-mediated degradation of intact
FLA 5.4.0 DTD � YGAST60562_proof
33-mer, Lactobacillus spp degraded P aeruginosa�modified
33-mer derived peptides more efficiently, delivering pep-
tides of 4�12 amino acids (Figure 6A). Most of these pep-
tides are shorter than the 9 amino acids required for
efficient antigen binding to HLA-DQ2 and activation of T
cells. We confirmed this by measuring gluten-specific T-cell
responses to these peptides using CD patients who under-
went wheat challenge (Supplementary Table 2 and
Supplementary Figure 3).34 Only a minority of Lactobacillus
spp degraded P aeruginosa�modified 33-mer�derived
peptides showed immunogenicity and, overall, there was a
reduction of immunogenicity compared with P aerugino-
sa�modified peptides (Figure 6B). The results suggest
immunogenic peptides generated by P aeruginosa can be
degraded to non-immunogenic peptides in the presence of
Lactobacillus spp.
Discussion
The role of intestinal microbiota in health and disease

has been one of most studied areas in the past decade,39 and
its contribution to food sensitivities40 and autoimmune
� 19 August 2016 � 6:13 pm � ce
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Figure 6. Immunogenic peptides produced by P aeruginosa can be degraded to non-immunogenic peptides by Lactobacillus
spp. (A) Chromatograms and sequences of peptides generated after 33-mer degradation by P aeruginosa (P1�P4) that were
further degraded by Lactobacillus (L1�L16). Chromatograms (left) show P aeruginosa�derived 33-mer peptides (P1�P4; black
peaks) generated by Lactobacillus degradation (red peaks). Tables (right) show sequences of P aeruginosa�derived 33-mer
peptides (P1�P4; in blue) and peptides produced by Lactobacillus from P aeruginosa�derived 33-mer peptides (L1�L16;
in red). Underlined: TG2-epitopes. (B) Interferon-gamma ELISpot in PBMCs harvested after gluten challenge in CD
patients in remission and ex vivo stimulated with native and deamidated peptides produced by Lacto (L1�L16) from P
aeruginosa�derived 33-mer peptides (P1�P4). TG2-deamidated and non-deamidated 33-mer were used as controls. Results
are shown as SFUs per 106 PBMC. Median response represented by horizontal line. Each patient donor response (numeric
code) is represented with characteristic shape and color dots (#P < .05 vs deamidated P-1; * P < .05 vs deamidated P-2;
þ P < .05 vs deamidated P-3; & P < .05 vs deamidated P-4 peptide).
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disorders, such as CD,41 is emerging. CD represents a unique
model to study diet-induced intestinal inflammation and
autoimmunity because the main environmental trigger,
FLA 5.4.0 DTD � YGAST60562_proof
gluten, has been identified as well as the molecular mech-
anisms underlying peptide association with MHC class II
and subsequent T-cell activation.6 Here we demonstrate
� 19 August 2016 � 6:13 pm � ce
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Figure 7.Model depicting how imbalances between pathobionts and core commensals in the proximal small intestine could
affect susceptibility to CD in a genetically predisposed host. Gluten proteins rich in proline residues are only partially digested
by human proteases generating large and immunogenic peptides, such as the 33-mer peptide. Partially degraded gluten
peptides (eg, 33-mer) could be metabolized by opportunistic pathogens, such as P aeruginosa, producing slightly shorter
peptides, but with retained immunogenicity. These P aeruginosa�modified gluten peptides translocate more efficiently the
mucosal barrier to interact with antigen-presenting cells expressing HLA-DQ2. On the other hand, P aeruginosa�modified
gluten peptides can be further detoxified by other members of the duodenal microbiota, such as Lactobacillus spp. The
metabolic activity of Lactobacillus produces peptides shorter than the 9 amino-acid length required for efficient antigen
binding to HLA-DQ2 and activation of T cells.
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that bacteria from the human small intestine participate in
gluten metabolism, and we characterize the pool of peptides
produced during bacterial gluten degradation. We show that
the tested opportunistic pathogens and core gut commen-
sals generate distinct breakdown patterns of gluten with
increased or decreased immunogenicity that could influence
autoimmune risk.

The Western diet contains about 20 g gluten per day.42

Gluten proteins are resistant to mammalian protease
degradation, but are good substrates for bacterial metabolic
activity.11 The use of proteases produced by environmental
microorganisms have been proposed as pharmacologic
therapy in CD.43–45 However, the ability of these proteases
to effectively degrade the amount of gluten present in a
normal diet before reaching the small intestine has been
questioned.42 This may limit enzymatic therapy in CD to
prevention of gluten-induced effects due to inadvertent
gluten consumption in patients who are already on a gluten-
free diet. On the other hand, detoxification of gluten in situ
by the metabolic activity of resident small intestinal bacteria
could constitute an attractive approach. The gluten-
degrading capacity of opportunistic pathogens isolated
from human feces, such as P aeruginosa, has also been
recently proposed.46 We found that P aeruginosa cleaves the
FLA 5.4.0 DTD � YGAST60562_proof
proteolytic resistant 33-mer gluten peptide, a product of
mammalian enzyme degradation, but delivers peptides
longer than 9 amino acids that strongly stimulate gluten-
specific responses in disease-relevant T cells isolated from
HLA-DQ2 CD patients. In addition, incubation of P
aeruginosa with gliadin predegraded by human proteases
enhances peptide immunogenicity in CD patients. The effect
on bioactivity is presumed to relate to proteolytic action of
the bacteria, but chemical modification via other mecha-
nisms, such as peptide deamidation by P aeruginosa trans-
glutaminases47 could be important. Although our results
show a similar deamidation ratio of PT-gliadin with and
without bacterial incubation by human TG2, bacterial TGs
could deamidate proteins differently. Partial P aeruginosa
gluten degradation can also facilitate uptake of shorter
peptides, but with retained immunogenicity through para-
cellular or transcellular pathways, increasing their avail-
ability to antigen-presenting cells in CD patients. We found
that P aeruginosa�modified peptides translocate the
mucosal barrier more efficiently than peptides generated by
human proteases. Finally, through a genomic approach, we
identified LasB, a metalloprotease virulence factor that
could play a pivotal role in infection, as the main bacterial
protease involved in the gluten metabolic activity of P
� 19 August 2016 � 6:13 pm � ce
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aeruginosa. LasB has been demonstrated to be important in
numerous infection models and it has been a target for the
development of anti-pseudomonal therapy.48 We therefore
propose that opportunistic pathogens, such as P aeruginosa,
colonizing the small intestine may constitute an additional
pathogenic factor in CD through their gluten metabolic
activity. This highlights the importance of characterizing
microbial proteases involved in gluten metabolism, as well
as the derived peptides released, before they are proposed
as pharmacologic therapy in CD.

Bacterial interactions could affect gluten-degradation
patterns and peptide output. In mice, we found that
bacterial communities dominated by Lactobacillus, such as
ASF, showed fast and effective gluten metabolism. In
agreement with this, our previous work has shown a pro-
tective role of this community in mouse models of gluten
sensitivity15 and Lactobacillus have been suggested previ-
ously as potential beneficial organisms in CD.49,50 In isola-
tion, Lactobacillus spp do not efficiently degrade the 33-mer.
However, incubation of gliadin predegraded by pepsin and
trypsin with Lactobacillus strains reduces its immunoge-
nicity to gluten-specific T cells from CD patients. This sug-
gests Lactobacillus can detoxify gliadin peptides after partial
digestion by human proteases. In addition, we found that
immunogenic peptides produced by P aeruginosa proteases
are also further degraded and rendered less immunogenic
in the presence of Lactobacillus. This mechanism provides
an explanation linking imbalances between pathobionts and
core commensals, such as Lactobacillus, and susceptibility to
autoimmune disease in a genetically predisposed host.

It is important to stress that the strains tested in this study
are not the only ones that could potentially modify CD risk.
Several bacterial groups from the human gastrointestinal
tract have been implicated in gluten metabolism in vitro.11,12

In addition, studies using 16S sequencing continue to identify
pathobionts, particularly from protebacteria, present and
abundant in populations of CD patients.10 In addition to
modification of gluten immunogenicity, it is possible some
pathobionts influence CD risk through nonspecific proin-
flammatory effects, such as altering intestinal permeability or
the innate immune response.

In summary, we identify both pathogenic and protective
microbe�gluten�host interactions that may modulate
autoimmune risk in HLA-DQ2 susceptible persons. We show
that P aeruginosa elastase generates highly immunogenic
gliadin peptides that translocate through the mucosal bar-
rier. However, Lactobacillus further degrade the elastase
products to peptides with lower immunogenicity (Figure 7).
The mechanisms described in this article could be targeted
to reduce disease by inhibiting elastase and similar pro-
teases51 or increasing the protective enzymatic activity of
certain bacteria.
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