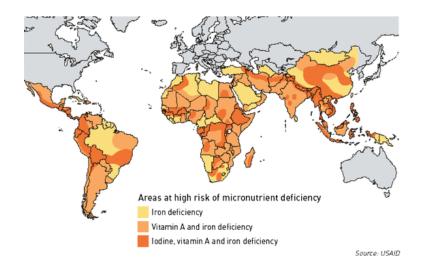


Bible Class – Micronutrients

6.4.2022 Niklas Krupka



Background

Why do we need to know about MN deficiencies

Prevalence of retinol deficiency

- Micronutrient deficiencies are extremely common worldwide and a significant public health problem
- ~12% of deaths <5y are attributed to deficiencies in iron, iodine, retinol or zinc

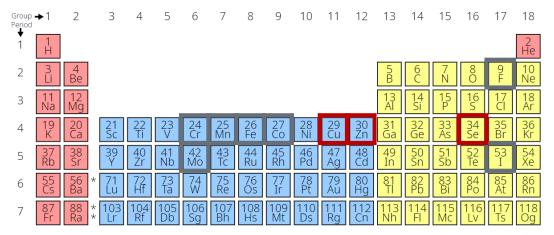
Ramakrishna J et al. 10.1007/978-1-4614-7918-5_23 Ahmed T et al. Ann Nutr Metab. 2012;61 Suppl 1:8-17.

MN deficiencies are common in our patient population

Disease	Micronutrients at Risk			
Disease	WICIOII di TIEI E AL KISK			
Alcoholism	Zn Vitamins A, D, E, K, B12, B9, B6, B1, B2, C			
→ Anemia Fe, Cu, Co Vitamins B12, B9				
Cardiomyopathies/ Heart failure	Se, Fe Vitamin B1, D [?]			
Inflammatory bowel diseases	Se, Zn Vitamins B12, A, D, E, K			
Liver diseases	Se, Zn Vitamins B12, A, D, E			
Obesity and Bariatric surgery	Cu, Zn, Fe Vitamins A, D, E, K, B1, B9, B12, C			
Kidney diseases (chronic & acute)	Chronic: Vitamins K, D Acute: B1, Fe, Se, Zn, Cu			
	Anemia Cardiomyopathies/ Heart failure Inflammatory bowel diseases Liver diseases Obesity and Bariatric surgery			

Table 2. Disease specific vitamins and in trace elements deficiencies.

[?]: means uncertainty as to deficiency.


MN deficiencies are common in IBD patients

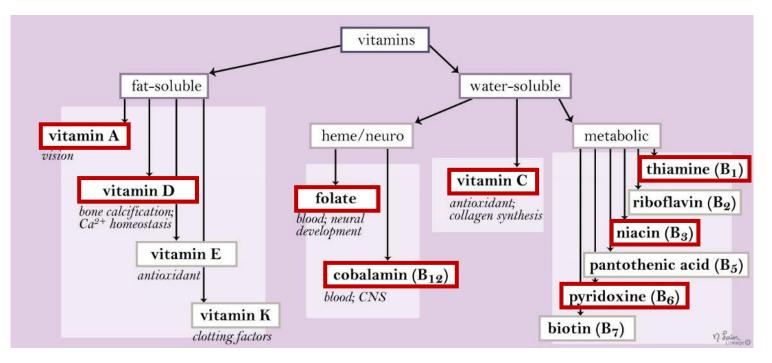
Laboratory evidence of nutritional deficiencies reported in adults with inflammatory bowel disease

Deficiencies	Percent		
Common			
Anemia	60 to 80		
Iron deficiency	39 to 81		
Vitamin D deficiency	75		
Vitamin B12 deficiency*	20 to 60		
Zinc deficiency	40 to 50		

Similarly high rates in CeD, SBS, bariatric patients

Micronutrients – Trace elements

We will cover


- Copper
- Selenium
- Zinc

We will not cover

- Iron
- Cobalt
- Fluoride/lodine $\rightarrow M$
- Cr/Mo/Mn

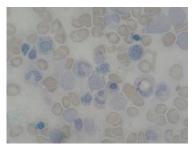
- \rightarrow Important, but everyone knows a lot about iron
- \rightarrow Covered in Vitamin B12
- $\Theta \rightarrow$ More a public health issue
 - → Relatively uncommon

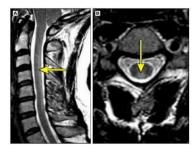
Micronutriens – Vitamins

Deficiencies of B₂, B₅, B₇ and E are rare (in CH) and will not be covered

Trace elements

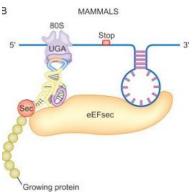
- Copper
- Selenium
- Zinc




Copper

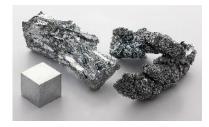
- Function Cofactor in redox reaction, multiple cupro-enzymes
- Absorption Mainly stomach and duodenum
- Assay Serum copper
- At risk Burns, bariatric surgery, **jejunal tubes**, CeD, excessive Zn intake (competition)
- Deficiency Anemia, neutropenia, hair/skin depigmentation, delayed wound healing, myeloneuropathy, osteoporosis,

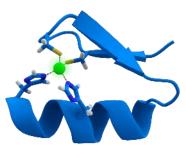
Ring sideroblast



Selenium

- Function Required for the synthesis of selenocysteine used in >30 **selenoproteins**. If cells lack selenium, these proteins are truncated and thus not functional
- Absorption Duodenum, colon
- Assay Plasma selenium
- At risk Geography-dependent (soil), long PN, bariatric surgery
- Deficiency **Keshan** cardiomyopathy (Coxsackie virus), impaired immunity to viral infections, myopathy, skin/nail effects


*INSEL***GRUPPE**

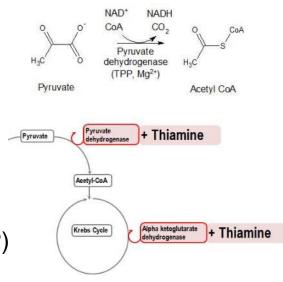

Zinc

- Function Part of >300 metalloenzymes (e.g. polymerases \rightarrow growth and tissue repair)
- Absorption Jejunum, storage in muscle & bone
- Assay Plasma zinc
- At risk SBS, bariatric surgery, chronic pancreatitis, IBD, cirrhosis

Deficiency Alopecia, **vesicular skin rash**, **impaired wound healing**, **immune deficiency**, growth impairment, diarrhea, impaired taste

Treatment Zinc gluconate 15–30 mg/d

Acrodermatitis enteropathica


Water-soluble vitamins

- Thiamine (B_1)
- Niacin (B₃)
- Pyridoxin (B₆)
- Folate (B₉)
- Cobalamin (B₁₂)
- Ascorbic acid (C)

Thiamine (B₁)

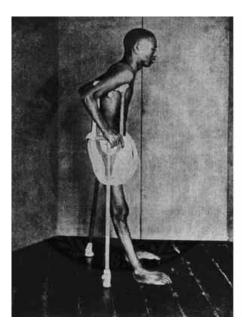
- Function Cofactor for enzymes for energy metabolism (ATP), synthesis of essential cellular molecules & nucleic acids. Highest needs of thiamine during **periods of high metabolic demand**
- Absorption Inhibited by alcohol consumption, storage highly limited (<20d)
- Assay Whole-blood thiamine diphosphate (ThDP)
- At risk Geographic, **alcoholism**, malnutrition (refeeding)

Thiamine deficiency – Wernicke encephalopathy

Presentation Classic triad: confusion, oculomotor dysfunction, gait ataxia (only in 30%!)

Pathophysiology Hemorrhagic necrosis in midline brain structures

Diagnosis Clinical suspicion: symptoms, history


Management Immediately give thiamine, whenever WE is a differential diagnosis

Prevention

WE can be triggered by glucose infusion in patients with unknown thiamine deficiency
 → Always give thiamine before glucose in patients at risk

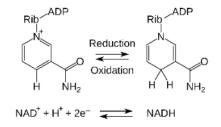
Thiamine deficiency – Beriberi syndrome

Dry beriberi	Wet beriberi
 Peripheral neuropathy Muscle weakness Gait ataxia Parasthesias Wernicke's Encephalopathy 	 High output heart failure Heart hypertrophy especially of the right ventricle Tachycardia or bradycardia Dyspnea/ respiratory distress Edema in lower extremities; oliguria Lactic acidosis

Thiamine substitution

Table 8

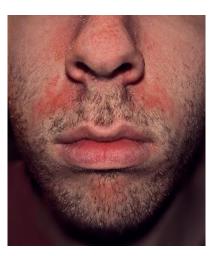
Recommended thiamine treatment doses (adapted from [329,346,347]).


	Clinical situation	Dose
-	Mild deficiency – outpatients	10 mg/day thiamin for a week, followed by 3—5 mg/daily for at least 6 weeks [348]
	Chronic diuretic therapy	Suggestion: 50 mg a day, by mouth
-	At risk for deficiency	100 mg, 3 times a day, IV
	High suspicion or proven deficiency	200 mg, 3 times a day, IV
	Encephalopathy of uncertain etiology including Wernicke encephalopathy	500 mg, 3 times a day, IV [347]
	Maintenance dose in proven deficiency	50—100 mg/day, orally
-	Refeeding syndrome	300 mg IV before initiating
		nutrition therapy, 200–300 mg IV
		daily for at least 3 more days
	Continuous renal replacement therapy	100 mg/day
-	Hospitalized patients-critical illness	100–300 mg/day [345,349–351]

*INSEL***GRUPPE**

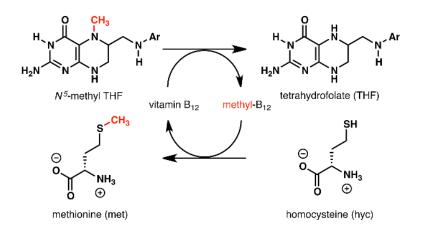
Niacin (B₃)

- Function Used for the coenzyme NAD (multiple roles!). Niacin can be synthesized from tryptophane
- Assay No reliable biomarker available
- At risk Malnutrition (e.g. corn-based diet), alcoholism, chronic diarrhea, carcinoid syndrome, chemotherapy
- Deficiency Pellagra (Dermatitis, Diarrhea, Dementia)
- Toxicity Flushing, hepatotoxicity



Pyridoxin (B₆)

- Function Used in the biologically active form pyridoxal phosphate (PLP). Coenzyme for >160 reactions (e.g. transamination)


- Assay Plasma PLP is a good biomarker
- At risk Alcoholism, dialysis, critical illness, alcoholic hepatitis, INH therapy
- Deficiency Seborrheic dermatitis, stomatitis, glossitis, anemia (relatively non-specific)

*INSEL*GRUPPE

Folate (B₉)

- Function Required for DNA & RNA synthesis (purines), transfer of single-carbon groups
- Absorption Duodenum and jejunum
- Deficiency Similar in folate and B₁₂ deficiency (will be discussed later)

Who is at risk for folate deficiency?

Table 9

Causes of Folate deficiency [471,473].

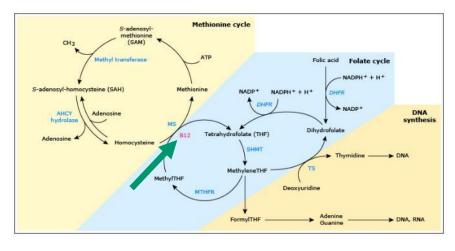
Cause	Example
Inadequate dietary intake	Alcohol abuse
	Poverty poor nutrition
Intestinal malabsorption	Inflammatory bowel disease
	Celiac disease
	Post-bariatric operations, post-gastrectomy
	Chronic intestinal failure
Increased needs	Physiological or pathophysiological states with
	high cell turnover:
	Pregnancy and lactation
	Inflammatory and neoplastic diseases
	Renal dialysis
	Increased hematopoiesis (e.g. chronic hemolytic
	anemia)
	Exfoliative dermatological conditions
Antifolate drug intake	Sulfasalazine
	Methotrexate
	Anticonvulsants
	Metformin
	Chemotherapy drugs

Assays for folate status

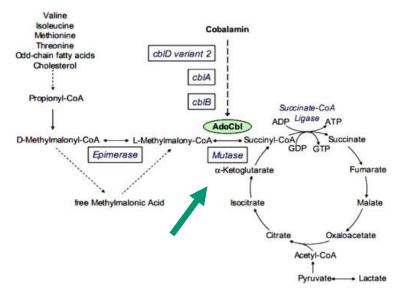
Serum/plasma folate

Reflects recent intake

RBC folate


Reflects status during the preceding 3 months Plasma homocysteine

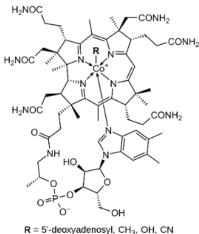
Elevated in folate deficiency (but also in B2, B6, B12 deficiency)

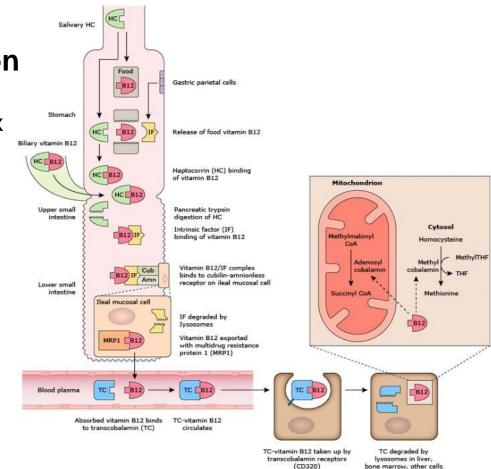


Cobalamin (B₁₂) – Function

DNA synthesis

AA / FA degradation


uptodate.com Ghoraba DA et al., Meta Gene. 2015;3:71-88.


Cobalamin (B₁₂) – Absorption

Absorption of this chemically complex molecule is not trivial

Interruption of any step can lead to deficiency

Storage ~1-3y

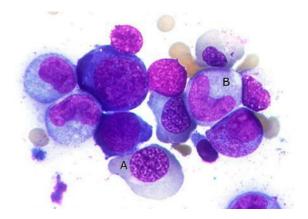
Causes of cobalamin deficiency

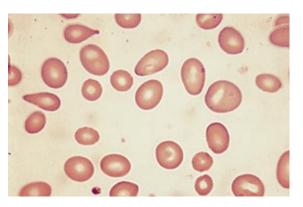
Table 12.1 The Causes of Vitamin B₁₂ Deficiency

Deficit	Origin		
Restricted intake	Malnutrition Reduced intake of food of animal origin Breastfed infants of vitamin B ₁₂ deficient mothers	Increased requirement	Hemolysis HIV infection
Impaired gastric absorption	Atrophic gastritis with achlorhydria Gastrectomy Zollinger-Ellison syndrome	Acquired	Pregnancy Alcohol (impedes absorn Nitrous oxide (irreversibl and deactivates it)
Loss or inactivity of intrinsic factor	Pernicious anemia		Proton pump inhibitors (H_2 receptor antagonists
Pancreatic insufficiency	Insufficient trypsin to release of haptocorrin bound vitamin B ₁₂ Ileal resection		Metformin (impedes abs Colchicine (reduces IF-E
Impaired ileal absorption of vitamin B ₁₂ -intrinsic	lleal disease, e.g., Crohn's		Slow K (impedes absorp
factor complex	Inflammatory bowel disease and tuberculous ileitis Tropical sprue		Cholestyramine (decreas
	Luminal disturbances: chronic pancreatic disease and gastrinoma		
	Parasites: giardiasis, bacterial overgrowth, and fish tapeworm Blind loop syndrome		

*INSEL*GRUPPE

Cobalamin deficiency

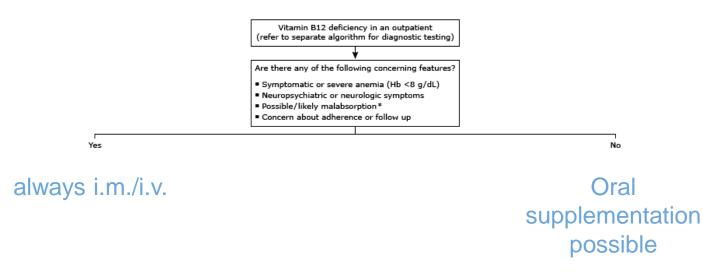

Table 10


-

Clinical symptoms of vitamin B12 deficiency [492,493,498,502–504].

	Clinical manifestation
Hematolgical	Macrocytosis, Reticulocytosis
(Same for folate deficiency)	Anaemia- pallor, fatigue, weakness, shortness of
	breath, tachycardia
	Thrombocytopenia, Leucopenia, Pancytopenia
Neurological	Peripheral neuropathy, paresthesia
	Sensory loss of extremities, Tingling, Numbness,
	Vertigo
	Demyelisation of corticospinal tract and dorsal
	columns- ataxia
Neuropsychiatric	Irritability, Mood-disorders/mood-swings,
	Psychosis, Depression
Cognitive	Confusion, Memory impairment, Cognitive
-	decline, Dementia
non-specific	Glossitis, Malaise, Fatigue, Weakness

Relatively high prevalence (10–30%)


Assays for cobalamin status

Serum cobalamin	Holo-TC		Methylmalonic acid (MMA)
Total levels	Biologically active fraction		Elevated in B12 deficiency
l	1	1	

No clear gold standard, both can be performed

2nd line assay (not performed in-house)

Cobalamin substitution

Ascorbic acid (Vitamin C)

- Functions Electron donation, radical scavenger Cofactor for: neurotransmitters, prostaglandins, peptide hormones, collagen
- Absorption Distal small intestine
- Assay Plasma AA (light sensitive!)
- At risk Sepsis, burns, trauma, bariatric surgery, alcoholism
- Deficiency **Scurvy** (weakness, gum disease, myalgias, skin changes, mood changes)

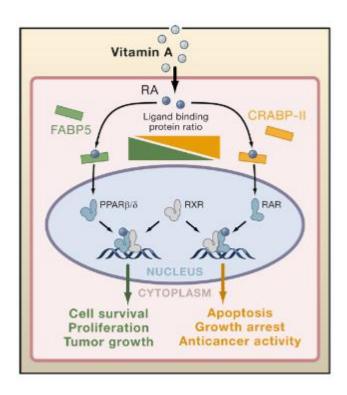
Treatment 1g/d AA for at least one week

perifollicular hyperkeratotic papules

Fat-soluble vitamins

- Vitamin A
- Vitamin D

Vitamin A – Functions


Retinal

Essential factor in rod cells and cone cells (eye)

Retinoic acid

Hormone that regulates >500 genes, particularly: immunity

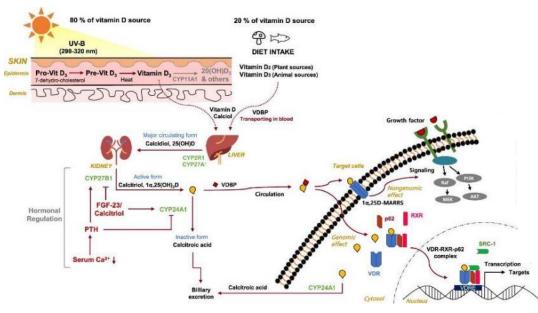
Nuclear Receptors: RAR, RXR, PPAR-y

Vitamin A deficiency (VAD)

Liver storage last for ~6 months

At risk patients Liver disease, alcoholism, SBS, CD

- Presentation Night blindness, Bitot spots, xerophtalmia, skin problems
- Treatment 3300–3500 IU per day Beware: toxicity



Cornea xerosis

Vitamin D – Functions

Vitamin D is not a classic vitamin but a steroid hormone precursor

3% of the mouse or human genome is regulated by VDR

Roles in

- Bone homeostasis
- Muscle function
- Cancer
- Immunity

Vitamin D – Deficiency and treatment

Requirement 600–800 IU/d, more in patients at risk (upper limit 10000 IU)

Prevalence Vitamin D deficiency (<50 nmol/L) in 40% of Europeans

Biomarkers 25-OHD

Treatment

Physiological complementation or high-dose regimen (50000 IU; evidence low)

General remarks and synopsis

General remarks on assays of MN

Many of our patients with MN deficiency have some degree of inflammation (i.e. CRP >20 mg/L)

Decreased in inflammation:

- Selenium, Zinc
- Pyridoxin (PLP), Vitamin C
- Vitamin A, Vitamin D

Increased in inflammation

- Copper, Ferritin
- Cobalamin

Unaffected by inflammation:

• Thiamine (ThDP), Folate

*INSEL*GRUPPE

Prevention of MN deficiencies

"Something from the supplement cart?"

Zusammensetzung

Vitamine	Pro Brausetablette	In %*
Vitamin B1	3.3 mg	300%
Vitamin B2	4 mg	286%
Vitamin B6	4 mg	286%
Vitamin B12	3 µg	120%
Vitamin C	180 mg	225%
Vitamin D	5 µg	100%
Vitamin E	12 mg	100%
Vitamin K	20 µg	27%
Biotin	145 µg	290%
Folsäure	430 µg	215%
Niacin	45 mg	281%
Pantothensäure	17 mg	283%
ineralstoffe		
Eisen	8 mg	57%
Calcium	120 mg	15%
boL	150 µg	100%
Kupfer	1 mg	100%
Magnesium	80 mg	21%
Mangan	500 µg	25%
Molybdän	50 µg	100%
Selen	55 µg	100%
Zink	4.4 mg	44%

Indication

 Patients at risk for malnutrition

Beware

- Multivitamin preparations usually contain little thiamin, Fe, Zn, B₁₂
- These need to be supplemented separately

Conclusion

- MN deficiencies common in the global south, but also in our patient populations (chronic inflammation, malabsorption, bariatric surgery, alcoholism)
- Some MN deficiencies are easy to detect (e.g. iron), some require high index of suspicion (e.g. niacin)
- Plasma concentrations of most MN depends on inflammation
 → always check CRP and interpret accordingly
- Many MN deficiencies can be prevented by supplementing multivitamin preparations
 in patients at risk
- Some MN deficiencies require separate supplementation (e.g. Zn, Fe, B₁₂)

06.04.2038

A 37 year-old man presents to your clinic for further workup of sudden onset of secretory diarrhea with ten to twelve watery bowel movements day and night. With a job as an executive, he finds himself increasingly fatigued, with occasional lapses in focus and confusion; he finds he is unable to follow conversations. Current medications are ibuprofen 400mg as needed for joint pain of headaches. His past medical, social and family history are negative. On physical exam he appears dehydrated and with normal vital signs. Physical exam is remarkable for two light purple, macular and scaling lesions on his forehead and left forearm. You order a stool culture and osmolytes; C. diff. PCD; ova and parasites, and stool stain; sedimentation rate; CRP; CBC; comprehensive metabolic panel; and 24h urine collection.

Which additional test would support your suspicion?

- A. Niacin
- B. Thiamine
- C. Riboflavin
- D. Pyridoxine
- E. Folic acid

A 37 year-old man presents to your clinic for further workup of sudden onset of secretory **diarrhea** with ten to twelve watery bowel movements day and night. With a job as an executive, he finds himself increasingly fatigued, with occasional lapses in focus and **confusion**; he finds he is unable to follow conversations. Current medications are ibuprofen 400mg as needed for joint pain of headaches. His past medical, social and family history are negative. On physical exam he appears dehydrated and with normal vital signs. Physical exam is remarkable for two light purple, **macular and scaling lesions** on his forehead and left forearm. You order a stool culture and osmolytes; C. diff. PCD; ova and parasites, and stool stain; sedimentation rate; CRP; CBC; comprehensive metabolic panel; and 24h urine collection.

Which additional test would support your suspicion?

- A. Niacin \rightarrow Pellagra
- B. Thiamine
- C. Riboflavin
- D. Pyridoxine
- E. Folic acid

Chronic use of which of these medications can potentially contribute to Vitamin B₁₂ deficiency?

- A. Cholestyramine
- B. Sulfasalazine
- C. Omeprazole
- D. Penicillamine
- E. Isoniazid

Chronic use of which of these medications can potentially contribute to Vitamin B₁₂ deficiency?

- Α. (Cholestyramine) \rightarrow Questionable
- Sulfasalazine \rightarrow Folate <u>B.</u>
- Omeprazole C.

Đ.

E.

- Penicillamine \rightarrow Zinc
- Isoniazid
- \rightarrow Pyridoxin (B₆)

A 29-year-old woman with fistulizing Crohn's disease who had multiple resections of small bowel in the past has been on total parenteral nutrition (TPN) for the last 2 months. She continues to have watery diarrhea and some discharge from an enterocutaneous fistula despite not taking anything by mouth. She presented to your clinic and complains of impaired taste, hair loss, skin rash and difficult vision at night in the last 2 weeks. In the physical exam you note several erythematous and vesicular lesions on her elbows and hands. Basic blood tests are as follows:

WBC9000/uLHb110 g/LMCV88 fLElectrolytes normalAlbumin32 g/L

What would be your next step in the management of her recent manifestations?

- A. Check plasma zinc level
- B. Empiric zinc supplementation
- C. Check blood niacin level
- D. Empiric niacin supplementation
- E. Empiric copper supplementation

A 29-year-old woman with fistulizing Crohn's disease who had multiple resections of small bowel in the past has been on total parenteral nutrition (TPN) for the last 2 months. She continues to have watery **diarrhea** and some discharge from an enterocutaneous **fistula** despite not taking anything by mouth. She presented to your clinic and complains of **impaired taste, hair loss, skin rash** and difficult vision at night in the last 2 weeks. In the physical exam you note several erythematous and vesicular lesions on her elbows and hands. Basic blood tests are as follows:

WBC9000/uLHb110 g/LMCV88 fLElectrolytes normalAlbumin32 g/L

What would be your next step in the management of her recent manifestations?

A. Check plasma zinc level

- \rightarrow unreliable in inflammation
- B. Empiric zinc supplementation
- C. Check blood niacin level
- D. Empiric niacin supplementation
- E. Empiric copper supplementation
- → No good assay
- → Rare in CD
- \rightarrow Good idea, but 1) rare in CD 2) no hematologic abnormalities present

A 62-year-old man presents to your office 3 months after Roux-en-Y gastric bypass. He is brought in by his wife, who has to help him transfer from the care and the waiting room because he is having trouble walking. He appears sluggish and does not participate in the conversation. She relates that ever since discharge from his surgery he has been vomiting nearly every day, and over the past couple of weeks he has become more sluggish, more forgetful, and has begun to act bizarrely (e.g., putting his shoes in the freezer). He has not been taking any of his prescribed medications. On physical exam, you note nystagmus.

In addition to IV fluids, which of the following is the most appropriate management?

- A. Urgent CT scan of head
- B. Upper endoscopy
- C. IV chromium
- D. IV thiamine
- E. IV selenium

A 62-year-old man presents to your office 3 months after Roux-en-Y gastric **bypass**. He is brought in by his wife, who has to help him transfer from the care and the waiting room because he is having **trouble walking**. He appears sluggish and does not participate in the conversation. She relates that ever since discharge from his surgery he has been vomiting nearly every day, and over the past couple of weeks he has become more sluggish, more forgetful, and has begun to **act bizarrely** (e.g., putting his shoes in the freezer). He has not been taking any of his prescribed medications. On physical exam, you note **nystagmus**.

In addition to IV fluids, which of the following is the most appropriate management?

- A. Urgent CT scan of head
- B. Upper endoscopy
- C. IV chromium
- D. IV thiamine \rightarrow Wernicke encephalopathy
- E. IV selenium