
Acute pancreatitis is an inflammatory disorder of the 
pancreas that is associated with substantial morbidity 
and mortality. Well-​known causes of acute pancreati-
tis such as pancreatic ductal obstruction secondary to 
gallstones (the most common cause), alcohol, endo-
scopic retrograde cholangiopancreatography (ERCP) 
and various drugs trigger pathological cellular path-
ways and organelle dysfunction that culminate in the 
hallmarks of acute pancreatitis — acinar cell death and 
local and systemic inflammation1–3. The global inci-
dence of acute pancreatitis is 34 affected individuals 
per 100,000 person-​years, and it has been increasing 
worldwide4. Acute pancreatitis is currently one of the 
most common gastrointestinal disorders to cause hos-
pitalization in the USA and costs the health-​care system 
$9.3 billion annually5–7. The worldwide obesity epidemic 
might also contribute to the increasing global incidence 
of acute pancreatitis8. Several complications of obesity 
that are rising in incidence, including cholelithiasis, 
hypertriglyceridaemia and diabetes, are independently 
associated with acute pancreatitis9,10.

Acute pancreatitis-​related mortality has decreased 
over the past decade from 1.6% to 0.8%11. This trend is 
probably due to improvements in timely and accurate 
diagnoses, as well as in the care of critically ill patients 
with acute pancreatitis. However, morbidity and long-​
term sequelae remain substantial12–14. For example, up 
to 40% of patients develop new-​onset prediabetes or 

diabetes after their first episode of acute pancreatitis, and 
a quarter of all patients with acute pancreatitis develop 
exocrine pancreatic insufficiency15,16. Necrotizing pan-
creatitis represents the most severe form of parenchymal 
injury in acute pancreatitis, and it occurs in 5–10% of 
patients3. In the USA, one in two patients with necrotiz-
ing pancreatitis files for disability within a year, and qual-
ity of life after acute pancreatitis is generally reported to 
be markedly reduced12,14. Additionally, ~18% of those 
with acute pancreatitis experience recurrence, and 8% 
develop chronic pancreatitis, both of which lead to addi-
tional financial burden on the health-​care system17,18. 
The annual health-​care cost attributable to readmissions 
owing to acute pancreatitis exceeded $3.8 billion in 2013 
in the USA6.

Despite the global burden of disease, currently, no 
effective therapeutic agents exist to treat or prevent 
acute pancreatitis. Nevertheless, important basic sci-
ence advances have been made to identify new cellular 
targets for potential drug development. For example, 
elucidation of calcium signalling pathways in acute pan-
creatitis led to the discovery of mitochondrial permeability  
transition pores and calcium release-​activated channels19–21, 
both of which hold promise as therapeutic targets. 
Recognition of mitochondrial dysfunction as a key 
driver of acute pancreatitis culminated in a multicentre 
trial examining the effect of early high-​energy enteral 
nutrition on outcomes, which is currently ongoing22. The 
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mechanism of obesity-​mediated pancreatitis severity has 
also been elucidated9. Free fatty acids appear to mediate 
end-​organ failure and have been shown to be released 
from the lipolysis of triglycerides stored in the intrapan-
creatic and peripancreatic adipose tissue23–25. Clinically, 
several landmark trials have addressed key management 
questions in acute pancreatitis, including the timing 
and mode of nutrition, timing of cholecystectomy in 
gallstone-​related acute pancreatitis and management of 
infected necrosis. In this Review, we describe important  
advancements made in our understanding of the mecha
nisms of acute pancreatitis and highlight important 
potential therapeutic targets. Additionally, informed by 
the latest evidence, we discuss current management of 
acute pancreatitis.

Diagnosis and nomenclature
Diagnostic criteria
Diagnosis of acute pancreatitis is made when two of the 
three following criteria are met: typical abdominal pain; 
serum amylase and/or lipase elevation more than three 
times the upper limit of normal; and imaging findings 
consistent with acute pancreatitis.

No standardized reference range exists for serum 
amylase or lipase levels owing to different laboratory 
techniques in measuring these enzymes. The upper limit 
of normal ranges between 100 and 300 U/l for amylase 
and 50 and 160 U/l for lipase. The limitations of serum 
amylase and lipase as diagnostic tests for acute pancre-
atitis deserve mention. Amylase levels can be normal in 
patients with alcoholic or hypertriglyceridaemic pancre-
atitis; therefore, diagnosis might be challenging in these 
populations26,27. Furthermore, bowel perforation, infarc-
tion, obstruction and abdominal aortic aneurysm can 
also increase amylase levels. Similarly, lipase can be ele-
vated in acute intestinal pathologies, cholecystitis, peptic 
ulcer disease and biliary obstruction27. Thus, imaging 
modalities complement diagnostic work-​up for acute 
pancreatitis when diagnosis is in doubt. These diagnostic 
criteria are agreed upon by all published guidelines for 
acute pancreatitis27–30. Aetiologies of acute pancreatitis 
are shown in Table 1.

CT of the abdomen is the most commonly used imag-
ing modality to diagnose acute pancreatitis. Findings 

can range from gland oedema and peripancreatic fat 
stranding (that is, hazy interface between the pancreatic 
parenchyma and surrounding fat on a CT scan; inter-
stitial pancreatitis) to lack of contrast enhancement in 
the parenchyma (necrotizing pancreatitis) and peripan-
creatic fluid collections. A contrast-​enhanced CT scan 
is required to diagnose necrotizing pancreatitis, and 
necrosis might not develop until 72 hours after symp-
tom onset. For this reason, obtaining a CT scan within 
72 hours of symptom onset is discouraged by published 
guidelines including those of the American College 
of Gastroenterology and American Gastroenterology 
Association3,27,28,30.

Nomenclature for local complications
Local complications mainly refer to collections that can 
form in and/or around the pancreas. The nomenclature 
for these complications, which are broadly labelled pan-
creatic fluid collections, has been updated by the revised 
Atlanta classification in 2013 (ref.3). Collections that con-
sist purely of fluid with minimal or no solid debris are 
called acute fluid collections. Collections that contain 
necrotic debris from pancreatic and/or peripancreatic 
necrosis are defined as acute necrotic collections. The 
terms pseudocyst and walled-​off pancreatic necrosis 
(WOPN) are used when these collections persist for 
4 weeks or longer and become organized and encapsu-
lated, respectively. This nomenclature aims to simplify 
and unify the definitions of local pancreatic compli-
cations, with each term carrying distinct implications 
for management3.

Pathophysiology
Cellular events central to the pathogenesis of acute pan-
creatitis include pathological calcium signalling2,20,31,32,  
mitochondrial dysfunction19,33,34, premature trypsinogen 
activation within the acinar cells and macrophages35–41,  
endoplasmic reticulum (ER) stress, impaired unfolded  
protein response (UPR)33,42–44 and impaired autophagy33,45. 
These events are triggered by common acinar cell tox-
ins, such as alcohol, nicotine and bile acids. Intraductal 
events, such as increased pressure caused by ductal 
obstruction, luminal acidification and ductal cell expo-
sure to bile acid, can also indirectly trigger these events. 
The crosstalk between acinar cells and the immune 
system perpetuates an inflammatory response46–48. At a 
locoregional level, the mediatory role of intrapancreatic 
and peripancreatic fat saponification and ischaemia-​
conditioned mesenteric lymph in acute pancreatitis 
severity has been recognized23,24,49–52. Characterization of 
these mechanisms has enabled identification of several 
potential therapeutic targets for future drug studies in 
acute pancreatitis (Table 2).

Animal models
Owing to the practical challenges of obtaining human 
pancreatic tissue during an acute pancreatitis episode, 
all the early cellular events during acute pancreatitis 
have been investigated using animal models53. Animal 
models help identify pathophysiological mechanisms 
to develop and test therapeutic agents. The choice of 
model type is determined by the pathophysiological 

Key points

•	The incidence of acute pancreatitis is 34 per 100,000 people in the general 
population, and it is rising worldwide.

•	In addition to premature trypsinogen activation, dysfunctional calcium signalling, 
impaired autophagy, endoplasmic reticulum stress, the unfolded protein response 
and mitochondrial dysfunction are key cellular processes in the pathogenesis of acute 
pancreatitis.

•	Well-​designed, adequately powered trials are needed to define and examine the 
efficacy of aggressive fluid resuscitation.

•	Infected walled-​off pancreatic necrosis should be managed with an endoscopic 
step-up strategy.

•	Diabetes and exocrine pancreatic insufficiency are common complications after 
an episode of acute pancreatitis, occurring in up to one in five patients following 
acute pancreatitis.

•	Acute pancreatitis impairs long-​term quality of life, and many patients experience 
repeated hospitalizations.

Local complications
A collective term to denote 
collections that form within 
and/or around pancreatic 
parenchyma as a result of 
acute pancreatitis.

Unfolded protein response
(UPR). A collective term to 
denote a set of compensatory 
cellular responses to 
endoplasmic reticulum stress

Autophagy
An orderly mechanism that 
processes, degrades and 
recycles various unwanted 
cellular components.
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mechanism of interest as well as the disease phase of 
interest. Currently, owing to low-​cost and available 
strains with genetic deletions, mice are the most widely 
utilized species53.

The cerulein-​induced pancreatitis model in rodents 
is commonly used to investigate early cellular events 
during acute pancreatitis. This model helped charac-
terize the processes of impaired autophagy, pathologi-
cal calcium signalling and ER stress, which are central 
to the pathogenesis of acute pancreatitis21,33,44,54. In this 
model, acute pancreatitis is induced by administering 
supraphysiological doses of cerulein (a cholecystokinin 
analogue) at repeated intervals. The effects of cerulein 
on the pancreas are dose-​dependent. At a high dose, 
it causes acinar cells to release digestive enzymes. 
At a supramaximal dose, it inhibits enzyme release 
and causes premature digestive enzyme activation55. 
Cerulein-​induced pancreatitis models are popular owing 
to their low cost and high reproducibility. Severe acute 
pancreatitis can be studied by modifying the cerulein 
administration protocol to increase acute pancreatitis 
severity. The disadvantages of this model include a clin-
ically irrelevant initiating mechanism (an excessive cho-
linergic stimulus is analogous only to scorpion venom 

toxicity in humans) and a different distribution of paren-
chymal injury to that seen in humans (diffuse in rodents 
versus patchy in humans)53,56.

Alcohol and lipopolysaccharide can be administered 
in rodents to simulate a model relevant to alcohol-​
related pancreatitis. This model was used to ascertain 
mechanisms of alcohol-​induced changes in acinar cell 
lipid metabolism and subsequent acinar cell injury57,58, 
but it is primarily used to study chronic pancreatitis. 
Some investigators utilize models that involve pancre-
atic duct manipulation to study intraductal events and 
their association with acute pancreatitis initiation59,60. 
American opossums have been used to elucidate the 
pathophysiological mechanism of gallstone-​associated 
pancreatitis because of the similarity of their pancreati-
cobiliary ductal anatomy to that of humans61,62. Studies 
using this model revealed the importance of pancreatic 
ductal obstruction as the central initiator of gallstone 
acute pancreatitis. However, opossums cannot be bred 
in the laboratory, and there is also a high intra-​animal 
variability, limiting its popularity as a model63,64.

Ductal cannulation and infusion methods are used 
to study the pathophysiology of post-​ERCP pancre-
atitis and gallstone pancreatitis in rodents and guinea 
pigs59. The drawbacks of these models include the need 
for surgery and anaesthesia. Although animal-​based 
experimental models have improved our understand-
ing of the pathogenesis of acute pancreatitis, obvious 
differences exist between human and rodent pancreati-
tis; therefore, the extrapolation of findings from animal 
studies to human pancreatitis should be done cautiously 
considering these limitations53. Encouragingly, several 
ex vivo human studies showed that many of the mech-
anisms identified in the animal studies are applicable 
to human pancreatitis models1,65. For example, when 
acinar cell responses to a muscarinic agonist and bile 
acids were examined in human acini extracted from 
cadaveric pancreata, trypsinogen activation, ER stress, 
dysfunctional autophagy and mitochondrial dysfunc-
tion were identified, similar to the responses seen in 
animal models1.

Updates on cellular mechanisms
Calcium signalling. Pathological elevation of Ca2+ con
centration in acinar cells is a central event in acute 
pancreatitis that mediates pro-​cell death and pro-​
inflammatory pathways such as premature trypsinogen 
activation, activation of nuclear factor-​κB (NF-​κB) and 
mitochondrial dysfunction48,66,67 (Fig. 1). In a physio-
logical state, Ca2+ is released from the ER as part of a 
signalling mechanism that initiates zymogen exocytosis 
and stimulates production of ATP in the mitochondria21. 
However, the increase in cytosolic Ca2+ concentration 
is only transient, as two ATP-​dependent calcium chan-
nels rapidly clear the cytosolic calcium: the smooth ER 
Ca2+ channels (SERCAs) move Ca2+ back into the ER, 
and the plasma membrane Ca2+ channels (PMCAs) 
exude Ca2+ out of the cell21. Alcohol and bile acids 
can disrupt this homeostasis and cause a global, sus-
tained pathological cytosolic Ca2+ elevation through 
the inositol 1,4,5-​trisphosphate receptor (Ins(1,4,5)P3R) 
signalling pathway. For example, palmitoleic acid ethyl 

Table 1 | Common and uncommon aetiologies of acute pancreatitis

Aetiology Examples Suggestive clinical data

Gallstone NA Choledocholithiasis; ALT over three 
times the upper limit of normal, which 
is variable in different laboratories; 
cholelithiasis when other causes have 
been ruled out

Alcohol NA Drinking history >35 standard drinks 
per week for >5 years

Trauma • ERCP
• EUS with FNA
• Aortic surgery
• Pancreatic resection

Pancreatitis following one of the listed 
procedures

Pre-​malignant 
and malignant 
conditions

• Intraductal papillary 
mucinous neoplasm

• Ductal adenocarcinoma

• Pre-​existing cyst with recurrent 
idiopathic episodes; dilated 
pancreatic duct in a patient without 
prior history of chronic pancreatitis

• Mass with duct dilatation; weight 
loss; diabetes diagnosis

Metabolic • Hypertriglyceridaemia272

• Hypercalcaemia
• Triglyceride level >1,000 mg/dl
• Elevated calcium level when no other 

cause is apparent

Genetic PRSS1, SPINK1, CFTR, CASR, 
CTRC

First-​degree family history of 
pancreatitis or pancreatic cancer ; 
pancreatitis onset <30 years of age

Autoimmune 
pancreatitis

NA Diagnostic criteria have been 
published elsewhere272

Drugs Mesalamine, furosemide, 
azothioprine, losartan

When all other causes are ruled out, 
if the patient is on a class I drug273 
and a temporal relationship between 
exposure and acute pancreatitis is 
feasible

Infections Viral, bacterial and parasitic When pancreatitis occurs in the 
context of other clinical features of 
the infection

Idiopathic NA When all causes have been ruled out

ALT, alanine aminotransferase; ERCP, endoscopic retrograde cholangiopancreatography ;  
EUS, endoscopic ultrasonography; FNA, fine-​needle aspiration; NA, not applicable.

ER stress
A state in which the demand of 
cellular machinery overwhelms 
the capacity of the 
endoplasmic reticulum (ER), 
leading to accumulation of 
misfolded proteins.

Cholecystokinin
A hormone that causes 
gallbladder contraction and 
pancreatic enzyme secretion.

Nuclear factor-​κB
(NF-​κB). A transcription factor 
that can cause production of 
pro-​inflammatory cytokines 
and chemokines.

Inositol 1,4,5-trisphosphate 
receptor
(Ins(1,4,5,)P3R). A glycoprotein 
complex located in the 
endoplasmic reticulum that 
can operate as a calcium 
channel.

NATuRe RevIeWS | GASTroEnTEroLogY & HEPAToLogY

R e v i e w s

	  volume 16 | AUGUST 2019 | 481



ester is a non-​oxidative, metabolic product of alcohol 
by the acinar cells that open Ins(1,4,5)P3Rs, which are 
Ca2+ channels located in the ER21. This pathway results in 
excessive Ca2+ release from the major intracellular Ca2+ 
store, the ER lumen20,31,66,68. Ca2+ concentration build-​up 
causes calcium release-​activated calcium channel protein 
1 (ORAI1) to promote Ca2+ entry into the cell from the 
outside, further increasing and sustaining a toxic cellu-
lar Ca2+ concentration2,69. Ductal obstruction, which can 
occur in post-​ERCP pancreatitis and gallstone pancre-
atitis, is thought to cause an increase in Ca2+ entry from 
outside the cell through PIEZO1 — a plasma membrane 
mechanoreceptor that has cation channel properties and 
is activated by pressure70.

The cellular Ca2+ concentration overload causes the 
mitochondrial permeability transition pores to open in  
a high-​conductance state, and this process results  
in the loss of the membrane potential needed to gene
rate ATP34,67,71. ATP depletion perpetuates the toxic 
Ca2+ concentration by disrupting the ATP-​dependent 
SERCAs and PMCAs from clearing excessive cytosolic 
calcium and impairs cytoprotective mechanisms that 
need ATP such as autophagy and the UPR21,33. Thus, the 
mitochondrial dysfunction secondary to cellular calcium 
toxicity ultimately leads to acinar cell necrosis.

On the basis of the central importance of Ca2+ con-
centration toxicity, ORAI1 channel inhibitors that 
prevent calcium entry into the acinar cells have been 
developed20,31. ORAI1 inhibitors have been shown to 
prevent necrosis in animal models of acute pancre-
atitis and human acinar cells, reducing both the local 
and systemic extent of injury20. Preventing ATP deple-
tion through inhibition of mitochondrial permeability 
transition pore opening with 3,5-seco-4-nor-​cholestan-
5-one oxime-3-ol (TRO40303) also has therapeutic 
potential. TRO40303 prevented membrane potential 
loss and necrosis in alcohol-​related acute pancreatitis 

animal models and human acinar cells19,34. TRO40303 
has been found to be safe and well-​tolerated by patients 
when tested in patients with acute myocardial infarction 
undergoing intervention. Thus, it could be efficiently 
examined in patients with acute pancreatitis72,73. The 
benefits of ATP replenishment through high-​calorie 
nutrition supplementation are also being explored in a 
multicentre trial of acute pancreatitis22.

Premature trypsinogen activation. Premature trypsino-
gen activation is another important pathological cellu-
lar event that can lead to acinar cell necrosis. Various 
pancreas insults (for example, trauma, pancreatic ductal 
obstruction and alcohol) can initiate fusion of the lyso-
some with the zymogens within the acinar cells, a process 
called colocalization37,40 (Fig. 2). Colocalization occurs 
in the context of other toxin-​provoked intra-​acinar 
cell events, such as decreased exocytosis of protease- 
​containing zymogen granules secondary to cytoskeletal  
dysfunction and increased synthesis of lysosomal and 
digestive enzymes74. Once the zymogen granule fuses 
with the lysosome, cathepsin B, a key lysosomal enzyme, 
activates trypsinogen to trypsin40. The mechanism 
of trypsin and cathepsin B release from the vacuoles 
remains elusive. Some have suggested that trypsin 
causes membrane fragility leading to leaky endocytic 
vacuoles that release trypsin and cathepsin B36. Other 
studies have suggested that vacuoles might rupture 
against the cytoskeleton and/or organelles37. Lysosomal 
and zymogen granule membranes can also become  
fragile from the metabolic products of alcohol and the loss  
of membrane-​stabilizing glycoprotein 2, respectively75,76.

Once released, trypsin causes autodigestion within and  
outside the acinar cells, and cathepsin B release causes 
necroptosis, a regulated form of necrosis36,77. Necroptosis 
is mediated via the receptor-​interacting protein kinase 
(RIP), including RIP1–RIP3, and mixed lineage kinase 

Zymogen granules
Vesicles that contain various 
pancreatic enzyme precursors.

Cathepsin B
A lysosomal protease.

Necroptosis
A regulated form of cell death.

Receptor-​interacting 
protein kinase
(RIP). A type of protein kinase 
that is implicated in regulation 
of cell death.

Table 2 | Potential therapeutic targets and target pathways in acute pancreatitis

Agent Target Target pathway Status

GSK-7975A ORAI1 Store-​operated calcium entry 
channel; calcium signalling pathway

Preclinical20,31

CM4620 Calcium release-​activated 
calcium channel

Store-​operated calcium entry 
channel; calcium signalling pathway

Phase II274

TRO40303 Mitochondrial permeability 
transition pore

Mitochondrial dysfunction Preclinical19

Disaccharide trehalose Unknown Autophagy Preclinical33

HMG-​CoA inhibitors HMG-​CoA Unfolded protein response Commercially available; 
clinical trial in progress97

Lactated Ringer’s 
solution

Gi protein-​coupled 
receptor 81

NLRP3 inflammasome pathway ; 
binds free fatty acid

Pilot clinical trial 
completed133,138,195

Pentoxifylline Synthesis of TNF Phosphodiesterase; inflammatory 
response

Pilot clinical trial in 
progress144

Orlistat Unsaturated free fatty acids Hydrolysis of triglycerides to free 
fatty acids; lipotoxicity

Commercially available; 
no trials conducted

Tocilizumab IL-6 Inhibition of IL-6 receptor ; 
inflammatory response

Preclinical in acute 
pancreatitis in progress; 
successful clinical trials 
in other diseases145,147,275

HMG-​CoA, 3-hydroxy-3-methylglutaryl-​CoA ; NLRP3, LRR- and pyrin domain-​containing 3; ORAI1, calcium release-​activated 
calcium channel protein 1.
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domain-​like (MLKL) pathway78,79, in which MLKL is 
phosphorylated by RIP3, leading to its oligomerization. 
MLKL oligomers then translocate to the plasma mem-
brane and ultimately cause plasma membrane punc-
ture, resulting in spillage of cellular contents and 
necroptosis80. Inhibition of the RIP1–RIP3 pathway 
by genetic modulation or necrostatin (an inhibitor 
of RIP1) decreases severity of acinar cell injury and 
therefore represents a potential target for acute pan-
creatitis therapy77,80. Intracytosolic protease activation 
also causes lysosomal membrane disruption, and this 
process leads to activation of caspase 3 through mito-
chondrial release of cytochrome c78. Caspase 3 subse-
quently mediates apoptosis. Macrophages are among the 
first immune cells to respond to the chemoattractants 

released by damaged acinar cells during pancreatitis. 
Interestingly, trypsinogen activation also occurs within 
macrophages in response to pancreatitis and results 
in macrophages becoming pro-​inflammatory41. This 
finding challenges the long-​held notion that premature 
trypsinogen activation occurs exclusively within the 
acinar cells.

Autophagy, endoplasmic reticulum stress and the 
unfolded protein response. Pathogenesis of acute pan-
creatitis is also driven by impaired cytoprotective 
mechanisms, such as autophagy and the UPR. Macro-​
autophagy is a cytoprotective mechanism that processes 
and recycles various cytoplasmic contents, which are 
aged, defective or damaged45. Selective macro-​autophagy 
refers to processing and recycling of specific damaged 
organelles and misfolded proteins. Acinar cells are 
highly efficient in producing proteins. Thus, the protein 
processing and transporting machinery and the mech-
anism of unimpaired autophagy are critical to the sur-
vival of acinar cells. Autophagy is completed through 
a series of steps that start with the enucleation of cyto-
solic contents within an open double membrane formed 
from the ER, Golgi apparatus and plasma membrane54 
(Fig. 3). The double membrane edges meet to form an 
autophagosome; this step is mediated by autophagy-​
related proteins (ATGs). Fusion of the autophagosome 
with the lysosome and degradation of the enclosed con-
tents are the final steps33,45. Genetic knockout of ATG5, 
ATG7 and lysosome-​associated membrane proteins has 
resulted in pancreatitis with extensive inflammation in 
mouse models of acute pancreatitis45,81,82. Additionally, 
impaired autophagy results in trypsinogen activation, 
ER stress and mitochondrial dysfunction, and as a 
result, acinar cells become more susceptible to other 
insults and death33,43,78,83,84. Thus, restoration of effi-
cient macro-​autophagy in the acinar cell seems to be 
an attractive therapeutic target. The disaccharide tre-
halose, which increases the efficiency of autophagy, 
reduces pancreatic injury and acute pancreatitis sever-
ity in animal models and holds promise as a potential 
therapeutic agent in acute pancreatitis33. However, the 
mechanism by which trehalose induces autophagy has 
not been established85.

ER stress refers to the accumulation of misfolded 
and/or unfolded proteins within the ER lumen. It occurs 
when the capacity of the ER to efficiently process and 
eliminate proteins is overwhelmed86. When ER stress 
devastates the protective cellular responses, apoptosis 
ensues87. Given the heavy protein production of aci-
nar cells, the pancreas is particularly vulnerable to ER 
stress, which occurs frequently in acinar cells in acute 
pancreatitis33,43,83,88. Common pancreas toxins (for exam-
ple, alcohol and its metabolites) cause ER stress by both 
increasing the demand for the production of proteins 
such as trypsinogen, chymotrypsinogen, lipase and lyso
somal enzyme cathepsin B and reducing the cellular 
ability to process and recycle unwanted proteins (that 
is, dysfunctional autophagy and mitochondrial dysfunc-
tion)33,43. During ER stress, acinar cells activate the UPR 
to restore cellular homeostasis. The UPR alleviates ER 
stress by upregulating the ER degradation machinery for 
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Fig. 1 | Calcium-​mediated mitochondrial dysfunction and cell death in acute 
pancreatitis. In acinar cells, alcohol, cholecystokinin (CCK) and bile acid cause inositol 
1,4,5-trisphosphate receptor (Ins(1,4,5)P3R)-mediated calcium release from the 
endoplasmic reticulum (ER) (1). The resulting low calcium concentration in the ER 
triggers opening of calcium release-​activated calcium channel protein 1 (ORAI1), 
through which calcium enters the cell from the extracellular space (2). This results 
in pathological global calcium concentration elevation. Calcium elevation results in 
opening of mitochondrial permeability transition pores (MPTPs) to a high-​conductance 
state, and loss of membrane potential across the mitochondrial membrane ensues (3). 
This process results in mitochondrial dysfunction and necrosis. Mitochondrial 
dysfunction leads to ATP depletion, which impairs ATP-​dependent mechanisms to 
reduce cytosolic calcium (4). This process then accentuates and perpetuates the 
pathological calcium toxicity. Pathological calcium elevation also causes other cytotoxic 
pathways (5), including premature trypsinogen activation, autophagy impairment (6)  
and activation of the nuclear factor-​κB (NF-​κB) pathway (7). The NF-​κB pathway leads  
to production of pro-​inflammatory mediators. The PIEZO1 mechanoreceptor, which 
contains cation channel properties and is activated by pressure, also promotes increased 
calcium entry from outside the acinar cell (8). CypD, cyclophilin D; PMCA: plasma 
membrane Ca2+ channel; SERCA, smooth ER Ca2+ channel.
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unwanted proteins and improves its capacity and effi-
ciency of protein synthesis and folding44,86,87,89 via three 
important pathways that respond by acutely decreasing 
protein synthesis. The three functional pathways of 
the UPR are the inositol-​requiring enzyme 1 (IRE1), 
activating transcription factor 6 (ATF6) and protein 
kinase RNA-​like ER kinase (PERK) pathways44,87. The 
downstream events of the IRE1 and ATF6 pathways 
culminate in activation of transcription factors such as 
ATF6, and spliced X-​box binding protein 1 (sXBP1). 
These transcription factors promote the synthesis of 
substrates needed for ER expansion, ER chaperones  
for protein folding and components of the ER protein 
degradation machinery45,54. They also initiate auto-
phagy to eliminate and recycle unfolded and misfolded  
proteins90. When these responses fail to restore homeo
stasis, the UPR eventually activates the apoptotic pathway. 
The PERK pathway is the terminal response, whereby  

its downstream effectors, such as transcriptional factor 
CEBP homologous protein (CHOP), promote apopto-
sis and inflammation87,91. Although CHOP can induce 
autophagy, it eventually promotes cell death during 
prolonged ER stress. Interestingly, widely available 
3-hydroxy-3-methylglutaryl-​CoA (HMG-​CoA) inhibi-
tors promote the UPR92,93. Statin use has been associated 
with lower incidence and severity of acute pancreatitis 
in observational studies94–96, and a randomized con-
trolled trial is currently ongoing to examine the effects of 
HMG-​CoA inhibitors, such as simvastatin, in preventing 
recurrent attacks of acute pancreatitis97.

Ductal cell dysfunction and intraductal events. Both  
transmembrane water channels (for example, aqua-
porin 1 in acinar and ductal cells) and cystic fibrosis  
transmembrane regulator (CFTR) channels are vital to 
physiological pancreatic fluid secretion98,99. Alcohol 
has been shown to markedly reduce CFTR function 
and the amount of bicarbonate secretion, which acidi-
fies the intraductal environment and leads to intraductal 
fluid stasis, promoting premature enzyme activation 
within the duct100–102. Bile acid-​mediated and pancreatic 
inflammation-​mediated reductions in aquaporins also 
contribute to this intraductal fluid stasis98. Different intra-
ductal events might also mediate acinar cell injury and 
death leading to acute pancreatitis59. These events include 
increased intraductal pressure, ductal cell exposure to bile 
acids and intraductal acidification60,70,103,104.

Increased pressure inside the pancreatic duct can 
activate the mechanoreceptor PIEZO1 in the acinar cells 
to trigger the pathological calcium signalling described 
earlier70. Ductal hypertension can also cause calcineurin-​
mediated acinar cell injury by promoting inflammation 
and activation of the signal transducer and activator of 
transcription 3 (STAT3) pathway105. Clinical examples 
of ductal hypertension include papillary oedema, acidic 
contrast injection into the pancreatic duct during ERCP 
and gallstone obstruction of the duct. Acidification of 
the pancreatic ductal lumen has been shown to activate 
transient receptor potential vanilloid 1 (TRPV1) in the 
primary sensory neurons and cause acute pancreati-
tis60. As such, luminal acidification can occur when an 
acidic contrast agent is used for pancreatography during 
ERCP, and PIEZO1-mediated, calcineurin-​mediated and 
TRPV1-mediated mechanisms of acute pancreatitis are 
highly relevant to post-​ERCP and gallstone pancreati-
tis60,70,106. Additionally, bile acid can cause mitochondrial 
dysfunction in a dose-​dependent manner in the ductal 
cells101. The resulting ATP depletion causes decreased 
ATP-​dependent bicarbonate secretion, and it can also 
cause ductal cell death. Breakdown of ductal cells 
exposes acinar cells to the bile acids, with resultant cell 
injury and death103,107,108. This mechanism is hypothe-
sized to be relevant to gallstone pancreatitis, in which 
a lodged gallstone in the papilla can expose ductal cells 
to bile acids by creating a common channel. However, 
under physiological conditions, pressure within the pan-
creatic duct is substantially greater than in the bile duct 
— thus, the hypothetical mechanism by which bile acids 
might travel against this pressure gradient has not been 
delineated109,110.
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Role of immune system. Injured acinar cells release 
chemokines, cytokines and various adhesion molecules 
that recruit and mediate infiltration of immune cells 
into the site of injury21,48,111,112 (Fig. 4). Among these 
chemokines, monocyte chemoattractant protein 1 (MCP1) 
facilitates the inflammatory monocyte trafficking, and 
macrophage inflammatory protein 2α (MIP2α) and CXC- 
chemokine ligand 1 (CXCL1) recruit neutrophils1,113. 
Illustrating their importance in the pathogenesis of acute 
pancreatitis, inhibition of chemokines and their recep-
tors has been shown to prevent pancreatic and distant 
organ injury in animal models114–122. Increased serum 
MCP1 levels also correlate with severe acute pancreatitis 
in humans123.

Once immune cells infiltrate the pancreas, the cel-
lular contents released from necrotic and injured cells 
activate monocytes and neutrophils and further prop-
agate the inflammation54,124,125. Neutrophilic NADP oxi-
dase causes oxidative stress and increased intra-​acinar 
trypsinogen activation39,126. Neutrophils also produce 
neutrophil extracellular traps, which are adhesive webs 
composed of granular proteins, DNA and histones that 
can cause ductal obstruction, activate pro-​inflammatory 
signals and prematurely activate trypsinogen2,47.

Activated monocytes are central to systemic inflam-
mation and worsening tissue injury in acute pancreatitis. 
Important mediators of monocyte activation are damage-​
associated molecular patterns (DAMPs), which are cellu-
lar contents that are released from the necrotic acinar 
cells. DAMPs mediate their effects by binding to dif-
ferent receptors on the immune cells127–130. For exam-
ple, the DAMPs high-​mobility group box protein 1  
(HMGB1), heat shock protein 70 (HSP70) and double-​
stranded DNA signal through Toll-​like receptors (TLRs) 
to activate the NF-​κB pathway. NF-​κB mediates the gene 
expression of pro-​inflammatory cytokines, chemo
kines and adhesion molecules. Other DAMPs, such as 
ATP and NAD, bind to P2X7 receptors to activate the 
inflammasome. Subsequently, pro-​IL-1β and pro-​IL-18 
mature into their biologically active forms through 
proteolytic cleavage. These pathways amplify the pro-
duction of pro-​inflammatory cytokines including TNF, 
IL-1β, IL-6 and IL-18, among others112,131,132.

Macrophages at distant organs are also activated and 
worsen systemic inflammation and distant organ injury 
in acute pancreatitis, although the mechanisms of dis-
tal organ injury underlying this effect have not been 
fully elucidated. Given the central importance of these 
pathways in driving and accentuating inflammatory 
responses in acute pancreatitis, inhibitors of NF-​κB and 
the inflammasome pathway have been developed and are  
being tested for efficacy in animal models48,133–137. 
Of these, MCC950, a potent inhibitor of the inflamma
some pathway, is being tested in other diseases such as 
ischaemic stroke, hepatitis and hepatic fibrosis in which 
inflammasome activation also has a crucial pathogenic 
role135,136. Additionally, lactate, administered in the form 
of the widely available lactated Ringer’s solution, holds 
promise, as it downregulates the inflammasome path-
way and reduces pancreatic injury in acute pancreatitis 
animal models133. Lactated Ringer’s solution also showed 
promise in clinical trials (discussed later)133,138,139.

Serum TNF and IL-6 levels have consistently been 
associated with increased severity of acute pancreati-
tis and acute lung injury140–143. TNF also causes direct 
acinar cell necrosis46. Pentoxifylline is a nonselective 
phosphodiesterase inhibitor that reduces synthesis of 
TNF by downregulating the NF-​κB pathway. A pilot 
double-​blind placebo-​controlled randomized trial in 
28 patients found that oral pentoxifylline three times a 
day reduced length of hospital stay144. These promising 
findings are currently being validated in a larger scale 
clinical trial. Tocilizumab, a commercially available IL-6 
receptor antagonist, is another potential therapeutic 
agent145,146. Administration of tocilizumab after induc-
tion of severe acute pancreatitis improved outcomes in 
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an animal study147. Tocilizumab is probably ready for a 
clinical trial in human acute pancreatitis given its estab-
lished safety record and efficacy in patients with other 
diseases such as giant cell arteritis, rheumatoid arthritis 
and graft-versus-host disease146,148,149.

The pro-​inflammatory phase in acute pancreatitis 
is followed by the compensatory anti-​inflammatory 
response syndrome, which is characterized by a pre-
dominance of anti-​inflammatory cytokines such as 
TGFβ, IL-4 and IL-10 (refs131,150,151). IL-10 is produced 
by acinar cells, monocytes, B cells and T cells. It acts 
at the transcriptional level to reduce the production 
of pro-​inflammatory cytokines via inhibition of the 
STAT3 pathway and T cell expansion152. Animal studies 
of acute pancreatitis have shown improved outcomes 
with the use of insulin-​like growth factor 1 and IL-4, 
which enhance IL-10 production153,154. During the anti-​
inflammatory response period, patients with acute 
pancreatitis are susceptible to developing infection of 
pancreatic necrosis155.

Genetic mutations. Several mutations have been iden-
tified that have pathogenic roles in acute pancreatitis, 
including mutations in protease serine 1, serine pro-
tease inhibitor Kazal type 1, chymotrypsin C, CFTR, 
claudin 2 and calcium-​sensing receptor genes156. An 
in-​depth review of clinical implications of these genetic 

mutations is beyond the scope of this Review, but a 
review has been published that summarizes the genetics 
of acute pancreatitis157.

Role of unsaturated fatty acids. Obesity and hypertri-
glyceridaemia are established risk factors for severe acute 
pancreatitis9,158. Studies have illuminated the pathophys-
iological mechanisms by which obesity and hypertri-
glyceridaemia mediate severe acute pancreatitis. During 
an acute pancreatitis episode, several mechanisms dis-
rupt the normal apical secretary path of the zymogen 
granules. Alcohol inhibits apical secretion and instead 
promotes basolateral secretion57. Acinar cell necrosis 
also causes liberation of enzymes to areas of the pancreas  
otherwise shielded from exposure to digestive enzymes. 
For example, lipase is freely released through the baso-
lateral membranes into the interstitium, peripancreatic 
region and bloodstream25,159–161. Lipase hydrolyses circu-
lating triglycerides and those stored in the intrapancreatic 
and peripancreatic adipocytes into saturated and unsatu-
rated free fatty acids (UFAs). UFAs such as linoleic, oleic 
and linolenic acids cause cytotoxicity by inhibiting the  
mitochondrial complexes I and V and increasing  
the levels of TNF and other chemokines augmenting the  
inflammatory response9,23,162,163. In clinical studies, 
patients with acute pancreatitis with increased visceral 
adiposity and elevated serum triglycerides on admission 
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were found to be at increased risk of multisystem organ 
failure and pancreatic necrosis, substantiating the 
findings of mechanistic studies24,164–166. Prevention of 
triglyceride hydrolysis through lipase inhibitors 
seems to be a promising therapeutic strategy in acute 
pancreatitis159,167.

Mesenteric lymph. The course of acute pancreatitis can 
be further worsened by pathological changes in the 
intestines. These changes include ileus and ischaemia– 
reperfusion injuries, which result in translocation of 
bacteria through the intestinal barrier and changes 
in the microbiome168. More recently, the importance 
of toxin-​containing lymph drainage has been high-
lighted52,169–171. Ischaemia-​conditioned mesenteric 
lymph has been associated with cardiac dysfunction and 
multisystem organ failure in animal acute pancreatitis  
studies49,52. The responsible constituent in the mesenteric 
lymph has not yet been identified170. However, ligation 
of the thoracic duct mitigated the deleterious effects of  
the mesenteric lymph in mouse studies49,171,172. Currently 
available percutaneous techniques and endoscopic 
ultrasonography methods have shown promise in safely 
accessing the thoracic duct173–175. Pending improvements 
in techniques for accessing the thoracic duct in humans, 
redirecting mesenteric lymph flow during an acute pan-
creatitis attack might be an approach to prevent remote 
organ failure.

Assessment of severity
Revised classifications
The revised Atlanta and determinant-​based classi-
fications of acute pancreatitis have been developed 
to classify patients into severity categories that carry 
prognostic significance. These classifications have been 
extensively validated3,176,177. The similarities and differ-
ences between the two classification systems are shown 
in Table 3. The two systems reflect important advance-
ments in the understanding of the main determinants of 
morbidity and mortality in acute pancreatitis. Contrary 
to the traditionally held notion that pancreatic necrosis 
itself is an independent determinant of mortality, there 
is now convincing evidence that necrosis without super-
imposed infection or organ failure has similar survival 
to interstitial pancreatitis, which carries a 1–2% mor-
tality3,178,179. Persistent organ failure (lasting >48 hours) 
seems to be the most important determinant of mor-
tality, which can be as high as 43%3. Duration of organ 
failure beyond 48 hours does not seem to affect mortality 
among patients with pancreatic necrosis180. Although 
patients with sterile pancreatic necrosis and/or peri-
pancreatic fluid collections have low mortality, they 
nevertheless experience a complicated hospital course 
compared with those with interstitial pancreatitis, and 
they frequently require prolonged hospitalization 
and frequent readmissions177,179.

Prediction of severity
Severe pancreatitis, defined as persistent organ failure, 
carries a mortality of up to 43% during the first attack181. 
Many prognostication models have been developed to 
predict severe pancreatitis early in the disease course, 

ranging from simple laboratory markers182–184 and bio-
markers123,142,185,186 to clinical scoring systems123,140,182,187–189. 
However, despite a plethora of predictive tools being 
available, none has been shown to be clearly superior 
to any other technique in large, head-​to-head compari-
son studies189–191. Thus, our ability to predict severe dis-
ease early in acute pancreatitis is still modest (accuracy 
~80%). Simple and accurate clinical predictors of sever-
ity include blood urea nitrogen elevation182,184, persistent 
systemic inflammatory response syndrome (SIRS)192 and 
haemoconcentration193. These scores have strong advan-
tages over other cumbersome scoring systems in that 
they are readily available and can be serially followed.

Management of acute pancreatitis
Early management in the first 72 hours
Once the diagnosis of acute pancreatitis is made in 
the emergency room, a predictive tool can help triage 
patients on the basis of predicted severity. Of all the prog-
nostic tools, SIRS is a commonly used, validated pre-
dictor of acute pancreatitis severity and mortality192,194. 
It can be easily calculated, and its components (body 
temperature, heart rate, white blood cell count and 
respiratory rate) are readily available clinical variables. 
Other important factors of early management include 
fluid resuscitation, nutritional support, identification of 
aetiology and analgesia (Fig. 5).

Intravenous fluid resuscitation. Society guidelines agree 
that early, adequate fluid administration is the corner-
stone of management in acute pancreatitis27–30. One pilot 
randomized controlled trial compared 20 ml/kg bolus of 
lactated Ringer’s solution followed by 3 ml/kg per hour 
versus 10 ml/kg bolus followed by 1.5 ml/kg per hour in  
60 patients with predicted mild acute pancreatitis195 
(Table 4). The aggressive resuscitation group was asso-
ciated with a 70% clinical improvement rate compared 
with 42% in the conservative group. It is worth empha-
sizing that the trial focused on patients with mild acute 
pancreatitis and was not designed to examine the role 
of fluid volume in preventing necrosis, organ failure 
and mortality.

In patients with predicted severe acute pancreatitis, 
some data suggest that aggressive fluid resuscitation 
might be harmful. In a randomized controlled clinical 
trial that included 115 patients, rapid haemodilution to 
<35% within 48 hours with fluid therapy was associated 
with increased mortality and occurrence of sepsis of 34% 
and 79% compared with 15% and 58%, respectively, in 
the slow-​dilution group196. However, observational 
data from the past few years suggest that aggressive 
fluid resuscitation might improve morbidity and sur-
vival197–199. Owing to differences in study design, patient 
population and definition of interventions, it is difficult 
to determine the effect of fluid volume on acute pancre-
atitis outcomes. Well-​designed, large-​scale randomized 
trials are sorely needed200.

Lactated Ringer’s solution is currently preferred over 
other crystalloids as the fluid type of choice in acute 
pancreatitis. This preference is based on a small pilot 
randomized clinical trial, which showed that adminis-
tration of lactated Ringer’s solution is associated with 
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a significant reduction in SIRS by 84% (P = 0.035) 
compared with normal saline138. Mechanistic evidence 
might also support this finding133. In a mouse study, 
administration of lactated Ringer’s solution reduced the 
severity of acute pancreatitis by inhibiting the inflam-
masome and NF-κB pathways133. Additionally, lactated 
Ringer’s solution contains calcium, which binds to UFAs 
and potentially mitigates their toxic effects9. In another 
in vitro study, lactated Ringer’s solution inhibited macro
phage polarization towards an inflammatory pheno-
type and inhibited NF-​κB activation201. Larger studies  
are needed to see whether these findings translate to 
meaningful clinical outcomes in humans.

When administering intravenous fluid therapy, it is 
important to closely follow the intravascular volume sta-
tus of the patient to prevent volume overload. In patients 
who are at risk of fluid sequestration, close monitoring 
of volume status is critical because they can develop life-​
threatening abdominal compartment syndrome, which 
is characterized by end-​organ dysfunction caused by 
increased abdominal pressure202. A paucity of data exist 
on which parameter should guide fluid resuscitation 
and on the role of maintenance fluid therapy in acute 
pancreatitis200. These areas warrant further studies.

Nutritional support. Evidence supports the safe early 
introduction of a solid, low-​fat diet in patients with 
mild or moderately severe pancreatitis without taking 
a stepwise approach (that is nil by mouth followed by 
liquid and then solid diet)203–205. For those patients who 
can tolerate an oral diet, an initial low-​fat solid diet is 
preferred203,205. These early and aggressive approaches to 
feeding reduce the length of hospital stay in patients with 
mild or moderately severe pancreatitis. In patients with 
mild–moderate acute pancreatitis who do not tolerate  
oral feeding within 3–5 days, enteral tube feeding should 
be considered. Nasojejunal feeding has traditionally 
been preferred over nasogastric feeding because it 
should theoretically be better tolerated by patients206. 
Positioning the feeding tube in the jejunum past the 
duodenum limits the stimulation of the already inflamed 
pancreas, causing less pain. However, studies comparing 
nasogastric with nasojejunal feeding did show similar 
tolerance rates207,208.

In patients predicted to have severe pancreatitis, how-
ever, early enteral feeding (enteral tube feeding within 
24 hours of presentation) has not been shown to improve 
outcomes when compared with oral feeding starting at 
72 hours209. In a rigorously designed, randomized con-
trolled trial in 208 patients with predicted severe acute 

pancreatitis, patients were assigned either to early enteral 
tube feeding or to start oral diet at or after 72 hours 
(on-​demand approach). Both groups developed major 
infections at similar rates of approximately 25% (Table 4). 
Additionally, there was no mortality benefit to early 
enteral tube feeding compared with the on-​demand, 
oral diet approach209. Thus, in patients who are pre-
dicted to have severe acute pancreatitis, it is reasonable 
to wait at least 72 hours and attempt an oral diet. Enteral 
feeding might not be feasible in patients who develop 
ileus as a complication of acute pancreatitis and opioid 
analgesia. This outcome can pose a substantial challenge 
to the management of acute pancreatitis. Thus, efforts 
should be made to optimize patient bowel function by 
monitoring and correcting electrolyte disturbances, judi-
ciously using opioid analgesia and encouraging mobil-
ity when feasible. Parenteral nutrition is considered the 
last resort because of its association with an increased 
rate of infection and mortality when compared with 
enteral feeding210,211.

Analgesia. A paucity of studies have assessed the effect 
of analgesia on outcomes in acute pancreatitis. Narcotic 
analgesia is frequently used in the USA and seems to 
be effective212. Interestingly, one animal study showed 
that morphine use was associated with increased acute 
pancreatitis severity and the prevention of pancreatic 
regeneration213. In a large propensity score-​matched 
observational study with 1,003 patients from intensive 
care units, epidural analgesia, predominantly containing 
non-​narcotic anaesthetics (for example, bupivacaine), 
was associated with substantially lower mortality than 
standard care among patients with severe acute pan-
creatitis214. Purported benefits of this approach include 
improved splanchnic and pancreatic blood flow and anti-​
inflammatory effects215,216. A multicentre, randomized 
controlled trial is underway to elucidate the benefits 
of epidural analgesia among critically ill patients with 
acute pancreatitis217. Given the risk of patients becoming 
dependent on opioid medications, other modes of effec-
tive analgesia such as non-​steroidal anti-​inflammatory 
agents need to be explored as first-​line analgesic agents 
in acute pancreatitis.

Management after the first 72 hours
Identification of aetiology and its management. In 
patients with mild biliary pancreatitis, cholecystectomy 
during their index hospitalization prevents recurrence 
(risk ratio as low as 0.28) and is cost-​effective218. Thus, 
it should be the standard of care218–221 (Table 4). Timing 

Table 3 | Comparison between revised Atlanta classification and determinant-​based classification

Classification Mild Moderately severe Severe Critical

Revised Atlanta 
classification3

No organ failure, 
local complications 
or exacerbation of 
comorbid condition

Transient organ failure 
(<48 hours), local complications 
and/or exacerbation of 
comorbid condition

Persistent organ 
failure

NA

Determinant-​
based 
classification276

No organ failure 
and no (peri)
pancreatic necrosis

Sterile (peri)pancreatic 
necrosis and/or transient organ 
failure (<48 hours)

Persistent organ 
failure (>48 hours) 
or infected (peri)
pancreatic necrosis

Persistent organ 
failure (>48 hours) 
and infected (peri)
pancreatic necrosis

NA, not available.

www.nature.com/nrgastro

R e v i e w s

488 | AUGUST 2019 | volume 16	



of cholecystectomy in patients with moderately severe 
and severe pancreatitis warrants further investigation. 
Although data are lacking, owing to concerns that early 
surgery in this setting increases surgical morbidity, wait-
ing at least 6 weeks to enable maturation or resolution  
of fluid collections is recommended222–224.

Well-​designed studies have shown that interventions 
to promote alcohol and smoking cessation reduce acute 
pancreatitis recurrence and readmission rates225–227. 
Serum triglyceride levels need to be checked and treated 
accordingly when above 1,000 mg/dl, as emerging evi-
dence suggests that even mild to moderate non-​fasting 
hypertriglyceridaemia might contribute to acute pancre-
atitis severity228. However, the benefit of treating non-​
fasting hypertriglyceridaemia to prevent recurrence 
needs to be investigated further.

In patients with a dilated pancreatic duct in the 
absence of prior history of pancreatitis or chronic pan-
creatitis, main-​duct intraductal papillary mucinous 
neoplasm (IPMN) should be considered as an aetiol
ogy. Main-​duct IPMNs have high malignant potential, 
so it is essential to recognize and treat them accord-
ingly. Pancreatic cancer is another important cause that 
accounts for approximately 1% of all acute pancreatitis 
causes229. For patients over the age of 40 years, a follow-​
up imaging study or endoscopic ultrasonography is 
important to rule out a mass.

Role of endoscopic retrograde cholangiopancreatography. 
The benefit of performing urgent ERCP (within 48 hours) 
in the setting of severe biliary acute pancreatitis and con-
comitant cholangitis and/or persistent biliary obstruc-
tion is well established27,30,223. However, in most patients 
with biliary pancreatitis, the common bile duct stone has 
already passed at the time of presentation; therefore, the 
majority of patients with biliary acute pancreatitis do 
not require ERCP. An ongoing randomized controlled 
trial aims to further evaluate the role of urgent ERCP in 
patients with predicted severe biliary acute pancreatitis230.

Antibiotic prophylaxis. Many trials have examined the 
potential benefit of prophylactic antibiotics in patients 
with either severe pancreatitis or necrotizing pancrea-
titis. However, no clear benefit has been demonstrated 
in the body of evidence, and therefore, guidelines rec-
ommend against routine antibiotic prophylaxis in acute 
pancreatitis27,29,30.

Local complications
Acute necrotic collections and WOPN
The management of pancreatic necrotic collections 
has evolved over the years. The surgical literature has 
debated about the indication, timing and mode of 
intervention for several decades231. Available interven-
tions include minimally invasive surgery (video-​assisted 

Week 1 Week 2 and beyond

• Cholecystectomy during index 
hospitalization for mild biliary 
pancreatitis

• Arrange EUS for idiopathic acute 
pancreatitis

• Consider genetic testing for 
patients <35 years old with 
recurrent idiopathic pancreatitis

• Identify underlying cause and 
address reversible causes

• Antibiotics coverage
• Less than 4 weeks: consider 

percutaneous drainage if no 
improvement despite 
maximum supportive care

• Longer than 4 weeks: consider 
step-up strategy for WOPN or 
transmural or transpapillary 
drainage for pseudocyst

Urgent 
ERCP

On-demand low-fat solid diet;
if intolerant, enteral feeding

through a feeding tube

Increase level of
care; evidence 

of necrosis or fluid
collection on CECT?

Predicted 
severe acute 
pancreatitis
or in 
multisystem 
organ failure

Clinical 
improvement

Suspected 
or proven 
infection

Cholangitis 
or persistent 
biliary 
obstruction

Day 3

Yes

No

SterileClinical deterioration

Consider
ICU level
of care 

• Severity assessment: 
BUN; haematocrit; 
and SIRS

• Prediction of severity: 
BISAP; and HAPS

• Goal-directed 
aggressive fluid 
resuscitation with 
lactated Ringer's 
solution; and consider 
following BUN and 
urine output for 
resuscitation goals

• Analgesia
• Aetiology assessment: 

medical history, 
abdominal US, 

 Ca2+ levels, 
triglyceride levels and 
evidence of mass on 
cross-sectional 
imaging   

Supportive
care

Yes

Causing refractory 
symptoms, biliary 
or gastric outlet 
obstruction or 
deterioration 

despite maximum 
ICU level of care?

Necrotic or fluid collection

Clinical deterioration

Fig. 5 | Acute pancreatitis management algorithm. The goals of acute pancreatitis management in the first week are 
to assess severity and assign an appropriate level of care, to ascertain aetiology and address reversible cause, to optimize 
nutrition and to arrange appropriate follow-​up for the majority of patients being discharged. Up to 80% of patients with 
acute pancreatitis will recover and be discharged within a week. Beyond week 1, however, 20% will deteriorate and 
will need more long-​term care depending on the driver of severity. Hence, goals for patients who deteriorate include 
identifying the determinant of severity, and if the deterioration is attributable to a necrotic collection, infection status 
and maturity of collection will determine management strategy. If the determinant of morbidity is organ failure, organ 
support is the most critical goal of care. BISAP, Bedside Index of Severity in Acute Pancreatitis; BUN, blood urea nitrogen; 
CECT, contrast-​enhanced CT; ERCP, endoscopic retrograde cholangiopancreatography ; EUS, endoscopic ultrasonography ; 
HAPS, Harmless Acute Pancreatitis Score; ICU, intensive care unit; SIRS, systemic inflammatory response syndrome;  
US, ultrasonography ; WOPN, walled-​off pancreatic necrosis.
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retroperitoneal debridement or laparoscopy), endo-
scopic cystenterostomy with or without direct endoscopic 
necrosectomy and percutaneous catheter drainage. 
Several landmark trials conducted in the past decade 
have helped to clarify the role of each of these modalities 
in the context of managing pancreatic necrosis (Table 4).

Indication. Given the substantial morbidity and mortal-
ity associated with the procedure, invasive intervention 
is indicated only when a necrotic collection becomes 
infected or causes symptoms, such as gastric outlet 
obstruction, failure to thrive, biliary obstruction or 
intractable pain30,232. The role of interventions has been 
most rigorously studied in patients with suspected or 
proven infected pancreatic necrosis223. Thus, an interven-
tion should be avoided in patients with sterile necrosis 
without symptoms, regardless of the size of the collection.

Timing. Observational studies and a randomized clin-
ical trial have suggested that delaying the pancreatic 
intervention is associated with lower morbidity and 
mortality223,233–236. In patients with infected pancreatic 
necrosis early in the disease course (that is, <4 weeks from 
onset of disease) who become clinically unstable despite 
the administration of intravascular antibiotics, a percu-
taneous drain placement for decompression is advised237. 
Beyond 4 weeks from the acute pancreatitis onset, endo-
scopic cystenterostomy with or without necrosectomy or 
minimally invasive surgery can be considered.

Mode of intervention. A step-​up approach using min-
imally invasive endoscopic intervention is the most 
beneficial mode of intervention, as illustrated in well-​
designed randomized clinical trials238–240. The step-​up 
approach takes a graded approach to WOPN, starting 
with the least invasive measure first (drainage of col-
lection using percutaneous catheter or by formation of 
cystenterostomy). An intervention would be stepped 
up to the most invasive option (necrosectomy) when a 
patient’s clinical response is not optimal to the less inva-
sive approach. This step-​up approach reduced rates of 
new organ failure by 28% (absolute risk reduction) and 
the occurrence of a composite end point of major com-
plications, multiple organ failure, perforation, fistula or 
death by 29%238. In a randomized controlled trial, drain-
age alone led to a resolution of WOPN in 40% of patients 
without the need for subsequent necrosectomy241. Data 
from a randomized clinical trial in 2018 support use 
of the endoscopic step-​up over the surgical step-​up 
approach. Specifically, the endoscopic step-​up strategy 
led to a lower rate of pancreaticocutaneous fistula for-
mation and shorter length of hospitalization than the 
surgical step-​up approach240. Notably, in all the above 
randomized clinical trials, the majority of the enrolled 
patients had proven infected WOPN239–241. By contrast, 
data on the management of symptomatic sterile WOPN 
have mainly been derived from observational studies242.

Endoscopic ultrasound-​guided transmural drain-
age through cystenterostomy can be used safely once 

Table 4 | Landmark randomized clinical trials in acute pancreatitis management

Trial n Year Main findings

Goal-​directed fluid resuscitation versus 
standard fluid resuscitation138

40 2011 SIRS reduction: normal saline 0% versus lactated Ringer’s 
solution 84%; P = 0.035

Aggressive fluid resuscitation versus 
standard fluid resuscitation in mild acute 
pancreatitis195

60 2017 • Clinical improvementa at 36 hours: aggressive fluid 
resuscitation 70% versus standard fluid resuscitation 
42%; P = 0.03

• Persistent SIRS: aggressive fluid resuscitation 7.4% versus 
standard fluid resuscitation 21.1%; adjusted OR 0.12  
(95% CI 0.02–0.94)

Early enteral feeding versus on-​demand 
oral feeding in predicted severe acute 
pancreatitis209

208 2014 Major infectionb or death at 6 months: early feeding  
30% versus on-​demand feeding 28%; P = 0.76

Cholecystectomy during index 
hospitalization for mild gallstone 
pancreatitis218

266 2015 • Readmission from recurrent gallstone-​related 
complicationc: same admission cholecystectomy  
5% versus delayed cholecystectomy 17%; P = 0.002

• No differences in surgical complications

Efficacy of pentoxifylline in treatment  
of predicted severe acute pancreatitis144

28 2015 • ICU admission: pentoxifylline 0% versus placebo 28%; 
P = 0.098

• Length of stay >4 days: pentoxifylline 14% versus placebo 
57%; P = 0.046

Step-​up strategy versus direct 
necrosectomy238

88 2010 Major complicationd or death: step-​up strategy 40% versus 
open necrosectomy group 69%; P = 0.006

Endoscopic step-​up versus surgical  
step-​up in WOPN240

98 2018 • Major complicationse or death at 6 months: endoscopic 
step-​up 43% versus surgical step-​up 45%; P = 0.88

• Pancreatic fistula: endoscopic step-​up 5% versus surgical 
step-​up 32%; P = 0.0011

ICU, intensive care unit; SIRS, systemic inflammatory response syndrome; WOPN, walled-​off pancreatic necrosis. aClinical 
improvement defined by decreased epigastric pain and decrease in blood urea nitrogen, haematocrit and creatinine. bMajor 
infection defined by infected pancreatic necrosis, bacteraemia or pneumonia. cRecurrent gallstone-​related complication defined 
by pancreatitis, cholangitis, cholecystitis, choledocholithiasis needing endoscopic intervention, biliary colic or mortality. dMajor 
complications defined by new-​onset multiple organ failure or multiple systemic complications, perforations of a visceral organ or 
enterocutaneous fistula or bleeding. eMajor complications defined by new-​onset organ failure, bleeding requiring intervention, 
perforation of visceral organ requiring intervention, enterocutaneous fistula and incisional hernia.

Cystenterostomy
The creation of a connection 
between a cyst wall and the 
wall of the gastrointestinal 
tract.
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the maturation of the collection wall occurs. Metal or 
plastic stents can be used, but a high-​quality comparison 
of effectiveness data is lacking243. The lumen-​apposing 
metal stents for drainage of WOPN have gained popu-
larity owing to their ease of deployment and effective-
ness244–247. However, long-​term safety data are lacking, 
and there are emerging reports of increased incidence of 
delayed bleeding with the placement of lumen-​apposing 
metal stents248–250.

Disconnected duct syndrome
Disconnected duct syndrome is a complication in which 
the integrity of the pancreatic duct is lost following an 
attack of necrotizing pancreatitis251. Up to 50% of patients 
with pancreatic fluid collections might have an under
lying disconnected duct that can lead to abdominal pain, 
recurrent acute pancreatitis or recurrent pancreatic fluid 
collections252,253. Disconnected duct syndrome is best rec-
ognized using secretin-​stimulated magnetic resonance 
cholangiopancreatography. In such patients, studies 
have proposed transmural double pigtail stents to be left 
indefinitely in the collection with the aim of maintaining 
the patency of the pancreaticoenterostomy237,254,255. This 
approach was found to be safe, with a decreased risk of 
recurrence when compared with patients without indefi-
nite stents (recurrence rate 17.4% versus 1.7%; P < 0.001) 
in one large observational study of 361 patients with pan-
creatic fluid collections253. Thus, this approach might 
become a first-​line technique when compared with pan-
creatic surgical drainage, which carries a substantial risk 
of morbidity and new-​onset diabetes.

Vascular complications of acute pancreatitis
Splanchnic vascular complications (SVCs) in acute pan-
creatitis include venous thrombosis and arterial and/or  
venous pseudoaneurysms256. Severe acute pancreati-
tis and pancreatic necrosis constitute risk factors for 
the development of SVCs. Splanchnic vein thrombosis 

occurs in approximately 15% of patients with acute pan-
creatitis216. The splanchnic vein recanalizes in a third of 
patients257,258. On the basis of available data, most SVCs 
in acute pancreatitis do not require anticoagulation 
therapy given their benign natural history259–261. On 
rare occasions, splenic vein thrombosis might lead to 
local portal hypertension with isolated gastric varices 
or superior mesenteric vein thrombosis with ascites. 
Pseudoaneurysms are thought to be a rare complica-
tion of pancreatitis; however, in the era of transmural 
metal stents, iatrogenic pseudoaneurysms have also been 
reported to occur ten times more frequently248. Despite 
being rare, pseudoaneurysms can be life threatening 
when not recognized and addressed in a timely fashion 
with coil embolization via interventional radiology.

Long-​term complications and follow-​up
Disease progression
Recurrent acute pancreatitis (RAP) occurs in 18% 
of patients after an episode of acute pancreatitis and 
results in impairment of patient quality of life13,18,262,263. 
Accumulating evidence suggests that patients with RAP 
are at substantially increased risk of chronic pancrea-
titis18,264. Idiopathic aetiology, active alcohol intake and 
smoking are the strongest risks for progression to RAP 
and chronic pancreatitis18,264,265. Population-​based cohort 
studies have suggested that acute pancreatitis might be 
a risk factor for pancreatic cancer229,266–268, but the risk 
seems to be confined to patients with acute pancreatitis 
who progress to chronic pancreatitis269.

Endocrine and exocrine complications
Until recently, endocrine and exocrine complications of 
acute pancreatitis were not well established. Now, studies 
support the idea that approximately one-​third of patients 
will develop prediabetes or diabetes within 5 years  
of an index episode of acute pancreatitis15,270, but the 
mechanisms and risk factors remain to be defined. 
Similarly, exocrine pancreatic insufficiency is common 
after acute pancreatitis, occurring in 24–40%12,16,270,271. 
Reported risk factors for exocrine pancreatic insufficiency 
following acute pancreatitis include pancreatic necrosis, 
severe acute pancreatitis and alcohol-​related aetiology16,270.

Quality of life
One prospective observational study has reported that 
long-​term health-​related quality of life is reduced among 
patients who survived acute pancreatitis when compared 
with age-​matched and sex-​matched individuals without 
pancreatitis14. Patients who experience multisystem 
organ failure, persistent abdominal pain requiring anal-
gesia and/or disability are at increased risk of dimin-
ished quality of life. Importantly, among patients who 
experience extensive pancreatic necrosis, 53% become 
registered as disabled at 1 year following their discharge 
from the hospital12.

Conclusions
Acute pancreatitis is a common and potentially life-​
threatening inflammatory disorder of the pancreas. 
Patients who survive the condition frequently develop 
long-​term devastating consequences such as diabetes 

Box 1 | Future areas of research in acute pancreatitis

Knowledge gaps or future directions

•	Collaborative networks
-- Build multicentre, collaborative networks with infrastructure to conduct large-​scale 
clinical trials

•	Recruitment of patients

-- Increase public awareness about acute pancreatitis; develop collaborations with 
emergency departments for efficient, early recruitment of patients

•	Analgesia
-- Compare narcotic versus non-​opioid; epidural versus intravenous or oral opioid 
analgesics

•	Fluid therapy
-- Study the optimal type and rate and define goals of fluid therapy

•	Endoscopic retrograde cholangiopancreatography
-- Assess the benefit of urgent biliary decompression in predicted severe biliary 
pancreatitis

•	Endoscopic drainage and necrosectomy
-- Compare endoscopic therapy in symptomatic sterile necrosis versus conservative 
management

•	Late complications of acute pancreatitis
-- Study the mechanisms of diabetes mellitus and exocrine pancreatic insufficiency 
following acute pancreatitis
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mellitus, exocrine pancreatic insufficiency, chronic pan-
creatitis and poor quality of life. This substantial bur-
den is noticeable at the health-​care system level, and the 
increasing incidence of acute pancreatitis highlights 
the urgent need for therapeutic agents designed to alter 
its natural history. For decades, the exact pathophysio
logical mechanisms of acute pancreatitis remained 
an enigma other than recognizing that it might be an 
autodigestive disease. A rich body of work derived from 
animal models uncovered several important pathophysio
logical mechanisms that could represent therapeutic 
targets, and several agents are already in development. 
Landmark clinical trials have provided insight into 
aspects of clinical management, such as nutritional 
support, fluid therapy for mild acute pancreatitis, pre-
vention of recurrence in mild gallstone pancreatitis and 
management of infected necrosis.

Despite the progress, several important research gaps 
remain. Many of the potential therapeutic targets iden-
tified in translational work need to be tested in phase I 
clinical trials. Translational work is required to inves-
tigate mechanisms of endocrine and exocrine failures 

after acute pancreatitis. But most importantly, well-​
designed, large studies are needed to examine the safety 
and effectiveness of early, goal-​directed fluid therapy; to 
clarify the goals of fluid resuscitation; and to determine 
the optimal analgesic regimen, the role of early biliary 
decompression in predicted severe biliary acute pan-
creatitis and the optimal endoscopic management of 
symptomatic sterile pancreatic necrosis. Unfortunately, 
conducting large-​scale trials has been extremely chal-
lenging owing to a lack of existing collaborative plat-
forms to execute large clinical trials and difficulty with 
recruiting patients early in the course of acute pancre-
atitis. Efforts focusing on constructing a collaborative 
network of hospitals to conduct clinical trials with a 
strong emphasis on recruiting patients very early in their 
disease course are urgently needed. More mechanistic 
studies are also needed to characterize mechanisms of 
tissue reconstitution and resolution of pancreatic inflam-
mation following acute pancreatitis, with an emphasis on 
endocrine and exocrine dysfunction (see Box 1).
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