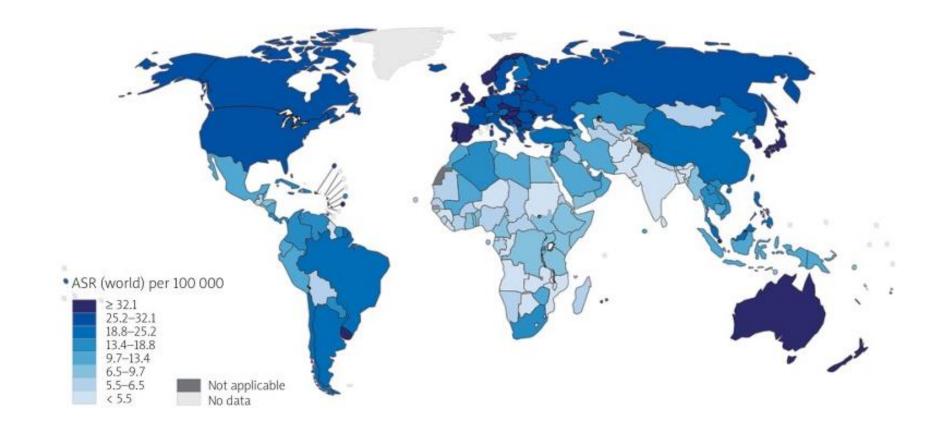
Polyposis Syndromes

Definition

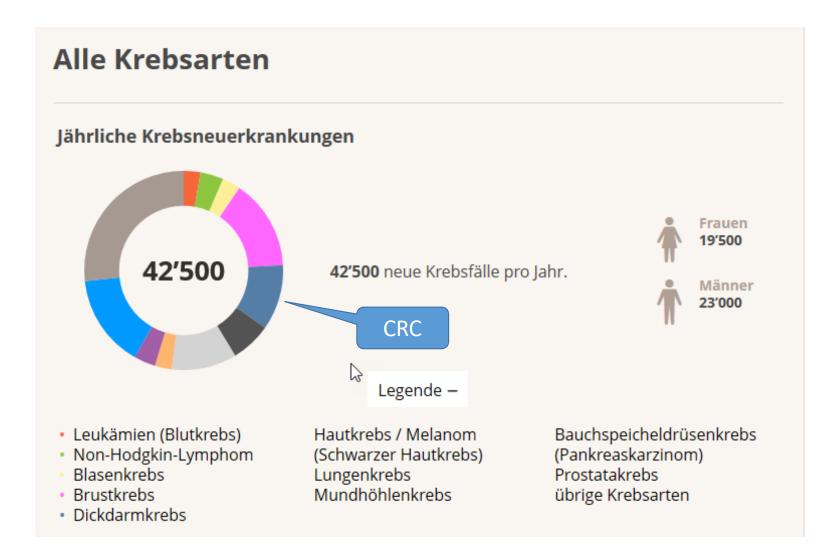
• Polyposis syndromes

- Are hereditary disorders characterized by the presence of multiple and/or unusual polyps distributed in the colon and rectum
- Are associated with an increased risk for colorectal cancer and
- Can be related with multiple **extracolonic manifestations**.
- Polyposis syndromes are together with the Lynch syndrome/HNPCC classified as hereditary CRC syndromes which account for 7-10% of colorectal cancer.


- Colorectal cancer (CRC) is one of the most frequent neoplasms and an important cause of mortality
- CRC is the third most commonly diagnosed cancer in males and the second in females

Männer		Frauen	
Prostatakrebs	27.5% §	Brustkrebs	31.7%
Lungenkrebs [⊥]	11.9%	Dickdarmkrebs	10.1%
Dickdarmkrebs	10.9%	Lungenkrebs	9.3%
Schwarzer Hautkrebs (Melanom)	6.6%	Schwarzer Hautkrebs (Melanom)	6.8%
Blasenkrebs	4.1%	Gebärmutterkörperkrebs	4.7%

Die häufigsten Krebsarten nach Geschlecht (Inzidenz)


www.krebsliga.ch

- CRC ist more incident among men than women (Age-standardised incidence rates per 100.000 of CRC in both sexes is 19.7, in males is 23.6, and in females is 16.3)
- CRC is the second most deadly cancer worldwide (about 881000 deaths estimated for 2018)
- About 1.8 million new cases of CRC are estimated to be diagnosed in 2018
- Developed countries are at the highest risk of CRC
- Globally the incidence varies over 10-fold

Map showing estimated age-standardised incidence rates (world) in 2018, colorectum, both sexes, all ages (reproduced from http://globocan.iarc.fr/ [10])


Gastroenterology Rev 2019; 14 (2): 89–103 DOI: https://doi.org/10.5114/pg.2018.81072

Anzahl Krebs-Neuerkrankungen pro Jahr in der Schweiz (Inzidenz) Zeitperiode 2013-2017

		Inzidenz (gerundete Zahlen, geordnet nach Häufigkeit)					
					Männer	Frauen	Total [#]
				alle Krebsarten*	23'000	19'500	42'500
				Brustkrebs	50	6'200	6'250
				Prostatakrebs	6'400	0	6'400
				Lungenkrebs	2'700	1'800	4'500
				Dickdarmkrebs	2'500	2'000	4'500
Dickdarmkrebs		1	Übersicht	Schwarzer Hautkrebs (Melanom)	1'500	1'300	2'800
Dickuariikreps			Obersicht	Non-Hodgkin-Lymphom	900	700	1'600
				Bauchspeicheldrüsenkrebs	750	750	1'500
				Blasenkrebs	950	320	1'270
				Krebs von Mundhöhle und Rachen	800	370	1'170
Jährliche Krebsneuerkrankur	igen			Leukämien	700	450	1'150
,	.8			Nierenkrebs	700	310	1'010
				Magenkrebs	600	340	940
				Gebärmutterkörperkrebs	0	950	950
				Leberkrebs	650	240	890
		1	Erauan	Schilddrüsenkrebs	240	550	790
			Frauen 2'000 Männer 2'500	Multiples Myelom	370	290	660
				Hirntumore und Tumore des Rückenmarks	380	270	650
11%	4'500 neue Fälle von Dickdarmkrebs pro Jahr.			Eierstockkrebs	0	650	650
1170				Speiseröhrenkrebs	450	140	590
				Hodenkrebs	470	0	470
				Krebs von Gallenblase und Gallengang	160	190	350
				Weichteilkrebs (Weichteilsarkome)	170	130	300
				Hodgkin-Lymphom	160	110	270
				Kehlkopfkrebs	220	40	260
				Gebärmutterhalskrebs	0	260	260
				Dünndarmkrebs	150	110	260
				Analkrebs	70	150	220
				Malignes Mesotheliom (Brustfellkrebs)	170	30	200
				Krebs von Nierenbecken und Harnleiter	120	70	190
				Krebs von Knochen, Gelenken und	60	40	100
				Knorpeln			
				Augenkrebs	30	30	60
				Andere Krebsarten (insgesamt)	650	800	1'450

- CRC results from both genetic and environmental factors and their interaction
- Sporadic disease (70% of CRCs)
 - Most common over the age of 50y
 - Dietary and environmental factors (including diet, exercise, smoking, obesity) are etilogically implicated
- Hereditary CRC forms (7-10%; Lynch-Syndrome and Polyposis syndromes)
- Familial CRC (25% of CRCs)
 - Patients have a family history for CRC, but the pattern is not consistent with one of the known inherited syndromes
 - There are probably predisposing germeline mutations that have yet not been indentified
 - It is likely that the amount of inherited syndromes is a little bit underestimated.

Identifying those patients who have an inherited cancer predisposition syndrome has significant benefit to both the patient and at-risk releatives with implications on

- Screening
- Management
- Surveillance strategies

Hereditary CRC

- Lynch Syndrome (2-4%)
- Polyposis Syndromes
 - FAP/AFAP
 - Gardner`s syndrome
 - Turcot syndrome
 - MUTYH-associated polyposis (MAP)
 - Juvenile polyposis syndrome (JPS)
 - Peutz-Jeghers syndrome (PJS)
 - Polymerase proofreading-associated polyposis (PPAP)
 - PTEN hamartoma tumors syndrome

(PHTS)

Cowden syndrome

* 315 -450 newly diagnosed cases per year in CH

Two subtypes of hereditary CRC

- Absence of colorectal polyposis
- Presence of colorectal polyposis

Adenomatous polyposis syndromes

- Familial adenomatous polyposis
 FAP)
- Attenuated FAP (AFAP)
- MUTYH associated polyposis (MAP)

Hamatomatous polyposis syndromes

- Peutz Jeghers Syndrome (PS)
- Juvenile polyposis syndrome (JPS)
- Cowden syndrome

Serrated polyposis syndrome

Familial cases of SPS have been reported. Genetic etiology has yet not been defined

Condition	Gene	Inheritance pattern
Familial adenomatous polyposis (FAP) (classic and attenuated FAP)	APC	Autosomal dominant
Gardner's syndrome (variant of FAP)	APC	Autosomal dominant
Turcot syndrome (variant of FAP)	APC, MLH1 or PMS2	Autosomal dominant or autosomal recessive
Hereditary non-polyposis colorectal cancer (HNPCC) syndrome (Lynch syndrome)	MLH1, MSH2, MSH6, EpCAM and PMS2	Autosomal dominant
MUTYH-associated polyposis (MAP)	MUTYH, APC	Autosomal recessive
Juvenile polyposis syndrome (JPS)	SMAD4 (MADH4), BMPR1A (ALK3)	Autosomal dominant
Peutz-Jeghers syndrome (PJS)	STK11 (LKB1)	Autosomal dominant
Polymerase proofreading- associated polyposis (PPAP)	POLE, POLD1	Autosomal dominant
PTEN hamartoma tumors syndrome (PHTS)	PTEN	Autosomal dominant
Cowden syndrome	PTEN	Autosomal dominant
Familial colorectal cancer type X	BRCA2, KRAS, APC, NTS, BRAF, BMPR1A, and RPS20	Autosomal dominant

Table I. Common hereditary syndromes associated with CRC, genes involved, and pattern of inheritance

Lynch syndrome (absence of colorectal polyposis)

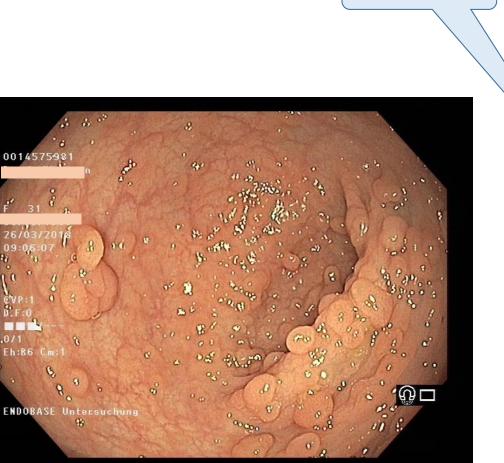
- Most common polyposis syndrome
- Epidemiology
 - Accounts for approximately 1% of all CRC cases
 - Prevalence: three cases per 100.000 individuals

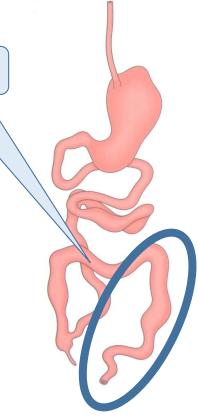
• Genetics

- Caused by germeline mutations in the Adenomatous Polyposis Coli (APC) Gen (tumor suppressor gene, located on chromosome 5)
- Autosomal dominant disease
- APC mutation in up to 90% of patients with FAP
- De novo mutations
 - Up to 25% of FAP cases are due to new or de novo mutations

Clinical manifestations

- Colonic manifestations
- Extracolonic manifestations


- Clinical manifestations
 - Colonic manifestations ?
 - Development of **100**'s to **1000**'s of adenomatous polyps
 - Polyps begin to develop during the second decade of life
 - Nearly **100% of untreated patients will have malignancy** by age 40-50 years
 - Approx. 40% of individuals with CRC have synchronous malignancies
 - 80% of tumors are left sided
 - 90% of adenomas are <0.5 cm
 - < 1% of polyps > 1 cm



Left sided

- Clinical manifestations
 - Colonic manifestations

Left sided

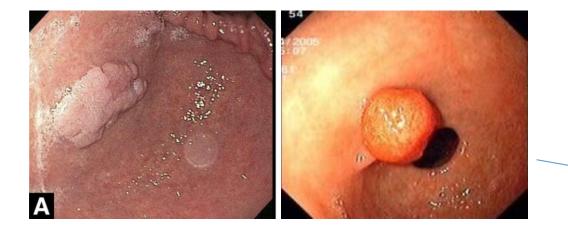
• Clinical manifestations

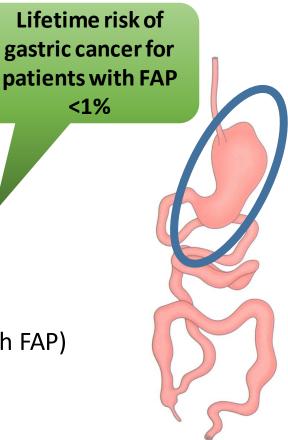
- Colonic manifestations
- Extracolonic manifestations

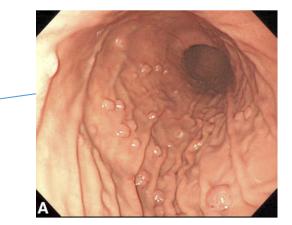
Extracolonic manifestations within the GI-tract

•

• Extraintestinal manifestations

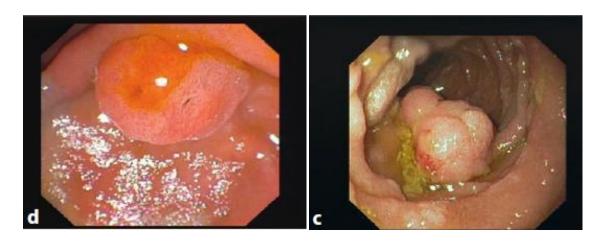

• Extracolonic manifestations within the GI-tract ?

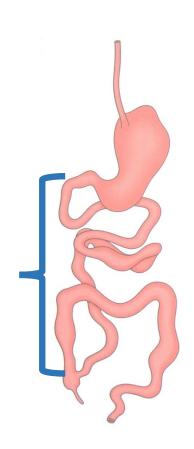

Fundic gland polyps


- Are found in most patients wit FAP (90% of pat.)
- Low grade dysplasia occurs in nearly half of fundic gland polyps, although they rarely progress to cancer

Gastric adenomas

- Are much less common than fundic gland polyps (<10% of pat. with FAP)
- Are typically isolated, located in the antrum
- Are associated with a **relatively low risk of progression to cancer**


• Extracolonic manifestations within the GI-tract

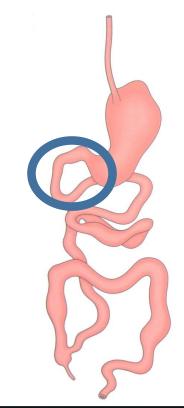

Duodenal adenomas

- Occur in **45 to 90% of pat**. with FAP
- Predilection for the ampullary and periampullary region
- Can develop interadenocarcinoma with a lifetime risk of 5-10%

Small bowel polyps

- Rate of jejunal and ileal polyps: 30-75%
- 50% of cases in the prox. Jejunum, 20% in term. Ileum
- Risk of malignancy is much lower compared duodenal adenomas

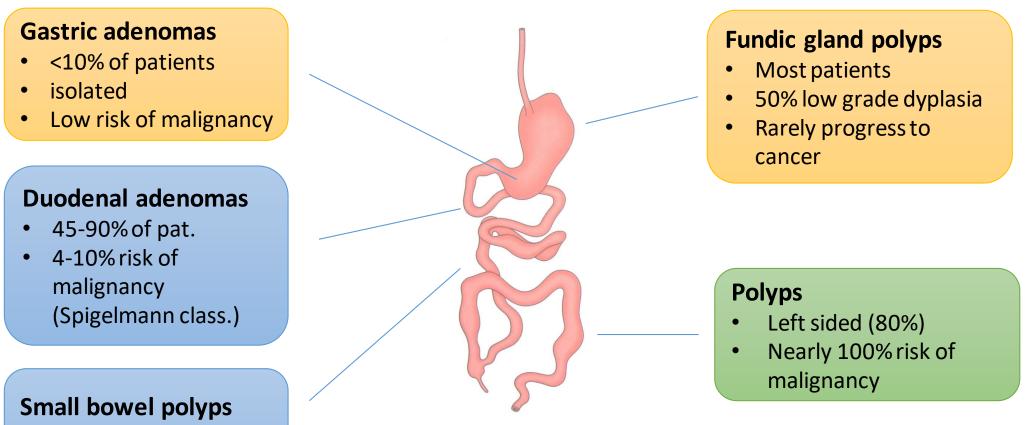
- Extracolonic manifestations within the GI-tract
 - Duodenal adenomas (found in 90% of pat.) Spigelmann classification (Gold standard for the risk-stratification of duodenal cancer)


Table 3	Staging the duodenum and ampulla and recommended OGD
surveillan	ce intervals

	Points allocated			
	1	2	3	
Number of polyps	1–4	5–20	>20	
Polyp size (mm)	1–4	5–10	>10	
Histological type	Tubular	Tubulovillous	Villous	
Degree of dysplasia	Mild	Moderate	Severe	

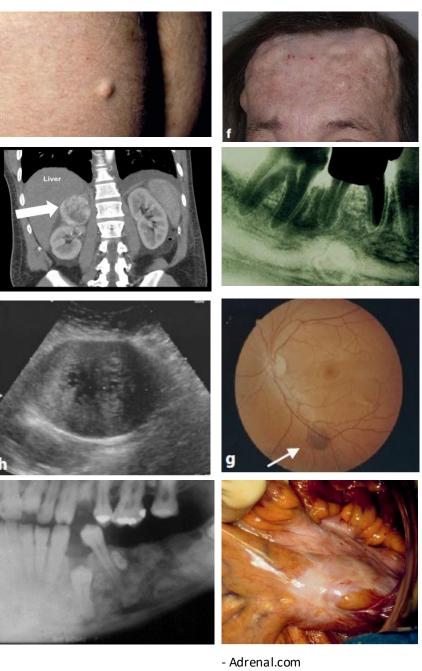
OGD, oesophago-gastro-duodenoscopy.

Total points	Spigelman stage	Recommended follow-up interval
0	0	5 years
1–4	I	5 years
5–6	II	3 years
7–8	III	Annual and consider endoscopic therapy
9–12	IV	6–12 months and consider endoscopic or surgical therapy


Lifetime risk of adenocarcinoma 5-10%

Monahan KJ, et al. Gut 2020;69:411–444

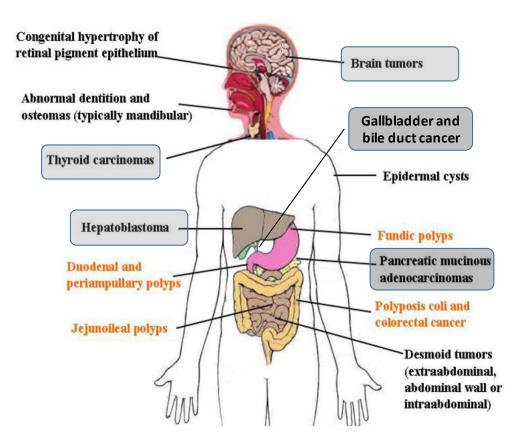
• Colonic and extracolonic manifestations within the GI-tract



- 30-75% of pat.
- Low risk of malignancy

- Extraintestinal manifestations of FAP
 - Benigns extraintestinal manifestations
 - Malignant extraintestinal manifestations

- Benign extraintestinal manifestations ?
 - Cutaneous lesions: fibromas, lipomas and epidermoid cysts
 - Osteomas
 - Dental abnormilities
 - Congenital hypertrophy of the retinal pigment epithelium (CHRPE; 58% of pat.)
 - Desmoid tumors
 - Solid tumors of the connective tissue
 - Approx. 20% of pat. wth FAP
 - Slow growing, do not metastasize
 - Can cause severe morbidity and mortality (enlargement with pressure on GI or urinary tract, local nervous or vascular system)
 - Adrenal tumors
 - Lifetime prevalence 7-13% in FAP pat.
 - Are rarely malignant, routine surveillance is not recommended



- Allgemein-und Viszeralchirurgie up2date,2010, 277-295
- Onkologe 2021, 27:203-218

- Malignant extraintestinal manifestations ?
 - Hepatoblastoma
 - 1.6% of FAP patients
 - Male predominance
 - Most often occur in the first 5 y of life
 - Brain tumors
 - 1-2% of FAP patients
 - In 80% of cases medulloblastoma
 - Thyroid cancer
 - Up to 12% (2-12%) of FAP patients
 - Mean age of diagnose 28 y
 - Female predominance (90% of cases)

– Gallbladder, bile duct and pancreas cancer ?

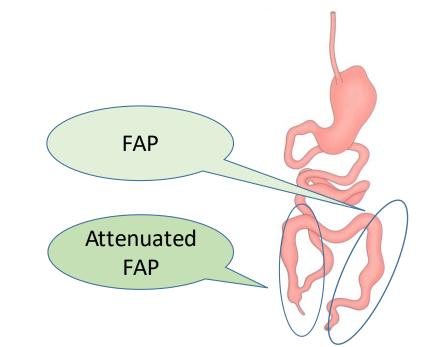
- Adenomatous change and cancer have been reported
- Pancreas cancer: 1.7% of pat. (gen. population risk 1.5%)

European Society of Radiology; www.myESR.org

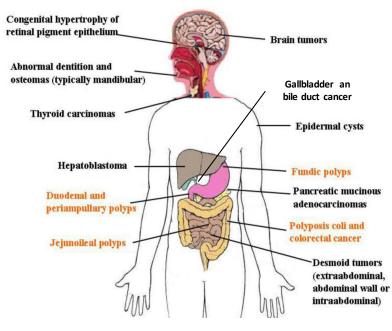
• FAP variants

- Gardner syndrome
- Turcot syndrome
- Attenuated FAP

Constellation of inherited colonic adenomatosis with extracolonic manifestations


Gardner, in the early 1950s, described a kindred with intestninal characteristics of familial adenomatous polyposis (FAP), but also with a number of extracolonic growths, including osteomas, epidermals cysts and fibromas. Dental abnormilities, desmoid tumors were later recognized as additional manifestations of the underlying genetic defect

Brain tumor polyposis syndrome is a historical term that originally described the association of familial colon cancer and brain tumors


- Attenuated FAP
 - Less aggressive variant characterized by
 - fewer colorectal adenomatous polyps (usually 10-100)
 - Later age of adenoms appearance (mean age at diagnosis 44y) and cancer (56y)
 - Mainly proximal colonic involvement
 - 80% lifetime risk for CRC
 - APC mutation in 15-30% of patients with AFAP
 - Most predominant extracolonic findings
 - Duodenal and gastric adenomas
 - Fundic gland polyps
 - Hepatoblastoma
 - Gastric and breast adenocarcinoma
 - Other extracolonic manifestations of FAP are rare

- Second decade of life
- Nearly 100% malignancy by age 40-50y

- Diagnosis
 - FAP should be suspected ?
 - In pat. with 10 or more cumulative colorectal adenomas
 - In pat. with a history of colorectal adenomas in combination with extracolonic features
 - Genetic testing should be performed for ?
 - FAP and MUTYH-associated polyposis (MAP), overlapping clinical features
 - **Other polyposis asscociated genes (**Mutationen in den Genen POLD1 und POLE; Polymerase-Proofreading-Associated Polyposis, PPAP)
 - If APC mutation is identified, genetic testing should be offered to at-risk relatives
 - All first-degree relatives (FDR) of the index case
 - All FDR of those found to have an APC mutation
 - Second-degree relatives when a family member declines genetic testing or has died

- Screening and management
 - Candidates for screening
 - Individuals with a pathogenic APC mutation
 - Individuals at-risk for APC who have not undergone genetic testing or have indeterminate genetic test results

Individuals at-risk

- FDR of those with FAP
- Individuals with >10 cumulative colorectal adenomas
- Individuals with colorectal adenomas in combination with extracolonic features associated with FAP

- Screening and management
 - CRC screening and surveillance
 - Classic FAP

Nearly 100% of untreated patients will have malignancy by age 40-50y

- Endoscopic screening with sigmoidoscopy should be started around age 10-12y
- If adenomas are detected a full colonoscopy should be performed to evaluate the extent of colonic polyposisand for planing colectomy (number, size and distribution of polyps)
- Several polyps should be sampled to confirm histology
- Pat. should continue to undergo annual colonoscopy (CRC screening) while awaiting colectomy
- CRC screening should be repeated annually and continued lifelong in APC mutation carriers

FAP

- Screening and management
 - CRC screening and surveillance
 - Attenuated FAP

Later age of adenoma appearance and fewer polyps

- Colonoscopy is the preferred CRC screening modality (higher risk of proximal lesions with with distal sparing)
- Colonoscopy should be started at the age of 25y and should be performed every one to two years in at risk individuals
- Polyps should undergo endoscopic resection (all detected polyps) followed be annual colonocopy for surveillance

Attenuated FAP

D Can Stock Photo

Familial adenomatous polyposis (FAP)

- Screening and management
 - Classic FAP
 - Surgery

Decision depends on

- Age
- Severity of polyposis
- Risk of developing demoids
- Wish to have children

untreated patients will have malignancy by age 40-50y

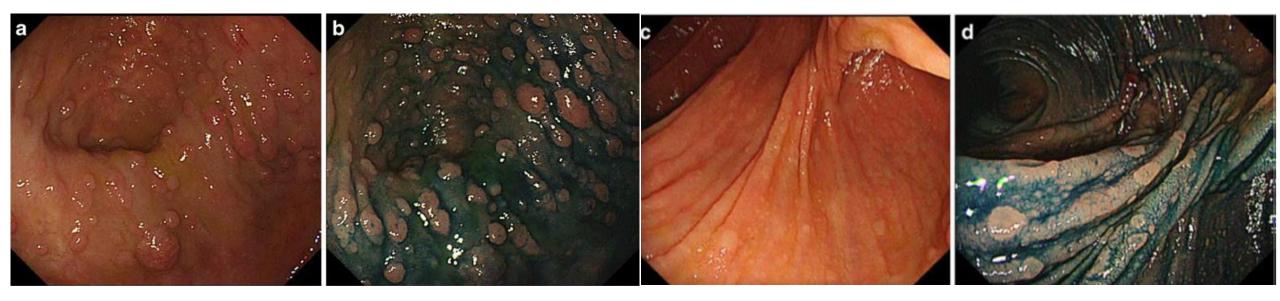
Nearly 100% of

- Poctocolectomy with ileal pouch anal anastomosis (IPAA)
 - More extensive surgery (pelvis dissection)
 - Reduction of fertility

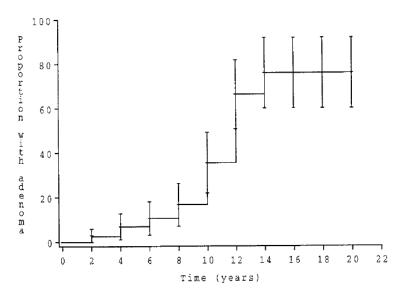
Recommended for all patients

• Worse bowel function

Total colectomy with ileorectal anastomosis (IRA)


- Complication rate is low
- Bowel function is usually good

Attenuated FAP

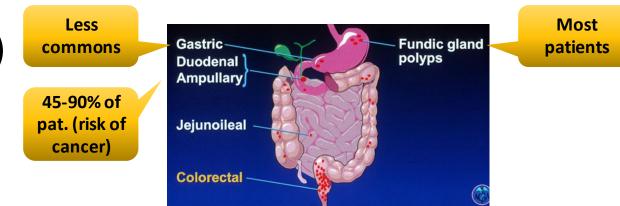

 If endoscopic control is feasible, surveillance can obviate or delay the need for colectomy

- Screening and management
 - Surveillance following colectomy ?
 - Colectomy does not completely eliminates the risk for cancer
 - Adenomas/Tumors may arise from the anal transition zone or within the ileal pouch
 - Endoscopic evaluation of the rectum or ileal pouch should be performed annually

- Screening and management
 - Surveillance following colectomy ?
 - Colectomy does not completely eliminates the risk for cancer
 - Adenomas/Tumors may arise from the anal transition zone or within the ileal pouch
 - Endoscopic evaluation of the rectum or ileal pouch should be performed annually

100 Current (%) Current

Figure 2 Cumulative incidence rate of adenomas in the ileal pouch after proctocolectomy with Kock and IPAA (*closed diamond*) and that of rectal adenomas after colectomy with IRA (*open diamond*).


Risk of adenoma in the pouch was 13%, 43%, and 72% at 5, 10, and 20 years of follow-up

Bible class Polyposis Syndromes

Figure 1. Risk curve to develop adenoma of the pouch after restorative proctocolectomy with construction of an ileal reservoir.

- Screening and management
 - Upper gastrointestinal tumours

- Duodenal adenomas occur in 45-90% of pat. with FAP with a predilection for the ampullary and periampullary regions. Lifetime risk of 4-10% to develop into adenocarcinoma
- Fundic gland polyps (found in most pat. with FAP) and gastric adenomas (< 10% of pat.) are associated with a relatively low risk of progression to cancer

– Screening for upper GI tumors ?

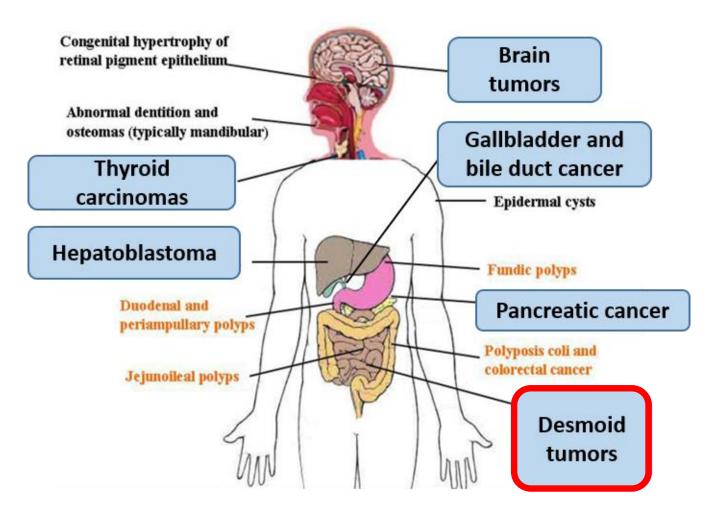
- Upper endoscopic screening (forward- and side-viewing) should be initiated in pat. with classic FAP and AFAP at the onset of colonic polyposis or around age 25-30y (whichever comes first)
- In patients without duodenal adenomas upper endoscopy should be repeated every three years

- Screening and management
 - Upper gastrointestinal tumours
 - Fundic gland polyps
 - Lage or irregular appearing polyps should be biopsied or resected
 - Surgery/endoscopic resection should be reserved for high grade dysplasia or cancer

Gastric adenomas

- Usually located in the antrum
- Should be resected endosopically

Duodenal adenomas

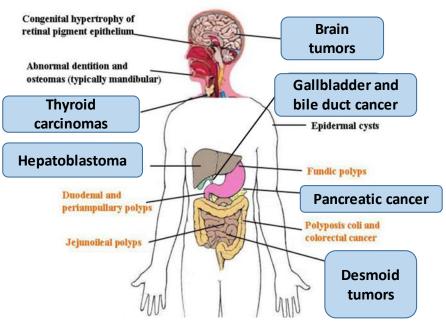

- Polyps should be resected (>10 mm) or sampled
- The frequency of upper endoscopic surveillance and treatment varies based on the severity of duodenal polyposis (Spigelmann 0 to IV)
- Surgery should be performed in pat. with stage IV polyposis

Lifetime risk for adenocarcinoma 4-10%

• **Duodenal adenomas – Spigelmann classification** (gold standard for risk stratification of duodenal cancer

Table 3 Staging the duodenum and ampulla and recommended OGDsurveillance intervals						
		Points allocated				
		1		2	3	
Number of po	Number of polyps 1–4			5–20	>20	
Polyp size (mn	n)	1–4		5–10	>10	
Histological type Tubular			Tubulovillous	Villous		
Degree of dysplasia Mild			Moderate	Severe		
OGD, oesopha	OGD, oesophago-gastro-duodenoscopy.					
Total points Spigelman stage		Recommended follow-up interval				
0	0		5 years			
1–4	I		5 years			
5–6	II		3 years			
7–8	Ш	I		Annual and consider endoscopic therapy		
9–12	IV	6–12 months and consider endoscopic or surgical therapy				

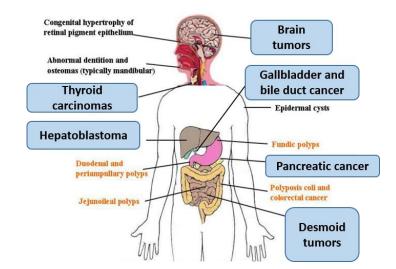
• Extraintestinal malignancies ?

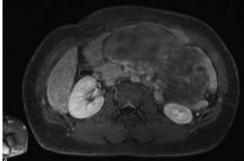

Bible class Polyposis Syndromes

Familial adenomatous polyposis (FAP)

- Screening and management
 - Extraintestinal malignancies
 - Thyroid cancer
 - Young women are at particulary high risk (mean age 28y)
 - 80% of FAP patients have a nodular thyroid, 12% develop thyroid cancer
 - Screening: annual US starting in the late teens

• Hepatoblastoma


- Occur in 1.6% of pat. with FAP with male predelection
- Are diagnosed at a mean age of 6 to 36 month
- Screening: AFP an US from infancy untill 5 to 10y every 3-6 months

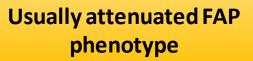

Familial adenomatous polyposis (FAP)

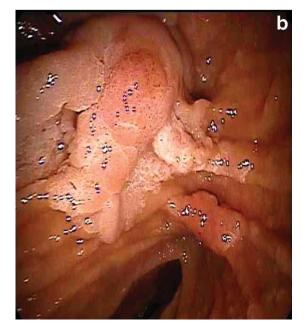
Screening and management

- Extraintestinal malignancies
 - Desmoid tumors
 - Approx. 8% of men and 13% of women with FAP
 - Can cause severe morbidity and mortality (progressive enlargement and consequently pressure on gastrointestinal or urinary tarct, local nervous or vacular system)
 - Screening (periodic abdominal imaging) is not recommended in asymptomatic pat.
 - Brain tumors, gallbladder, bile duct and pancreatic cancer
 - Surveillance strategies are currently not recommended
 - Adenomatous change and cancer have been reported
 - Pancreas cancer: 1.7% of pat. (gen. population risk 1.5%)

- Second most common cancer syndrome associated with adenomatous polyposis
- First described in 2002

Epidemiology and Genetics ?


- Epidemiology
 - Monoallelic MUTYH mutations are found in 1-2 % of the general population


• Genetics

- Autosomal recessive condition
- MUTYH-gene: DNA base excision repair gene repairing DNA injury from oxidative stress

- Clinical manifestations
 - Colonic manifestations
 - Average age of onset around the mid-50s
 - Fewer than 100 adenomas
 - High penetrance with a lifetime CRC risk of 70-80%
 - Extracolonic manifestations
 - Increased risk of duodenal polyposis (20%) and carcinoma (4%)
 - Cancers of
 - Ovaries and endometrium
 - Bladder
 - Skin
 - Breast

It is still **not clear weather** the **lifetime risk** for these malignancies **is increased**

Am J Gastroenterol 2017; 112:1509–1525

• Diagnosis

- MAP should be suspected in patients with 10 or more cumulative colorectal adonemas - Genetic testing should be performed for MAP and FAP (overlapping clinical features)

> Average age of onset around the mid-50s

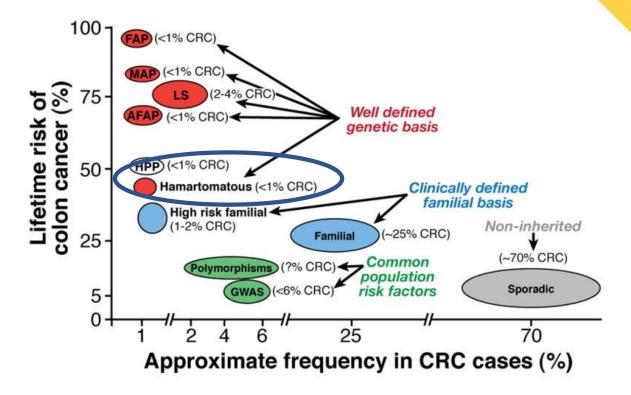
- Screening
 - Colonoscopy
 - Starting at age 25-30y
 - repeated every 2-3 years if negative
 - continuied lifelong

- EGD

- Starting at age 30-35y (NCCN recommendation)
- Including an EDG with side-viewing instrument
- Future screening dependant on findings (Spigelman stage), at least every 3 y

The **risk for duodenal cancer** in MAP is **similar to** that of **AFAP** and **FAP**

- Treatment
 - Colorectal management
 - Endoscopic polypectomy
 - Surgical treatment (IPAA/IRA)
 - patients with unmanageable adenomas
 - If cancer deveolpes
 - Duodenal adenomas:
 - Usually managed as in FAP (Spigelmann Classification)
- Surveillance
 - Colorectal
 - Endoscopy anually
 - after colectomy
 - in patients managed with endoscopic polypectomy
 - Duodenal adenomatosis
 - Usually managed as in FAP (Spigelmann Classification)


- Lifetime CRC risk 70-80%
- Fewer than 100 adenomas
- Average age of onset mid-50s

Duodenal adenomatosis Spigelman staging system (gold standard for risk stratification)

Hereditary CRC

Two major subtypes

- Absence of colorectal polyposis
- Presence of colorectal polyposis

Lynch Syndrome (LS)

Adenomatous polyposis syndromes

- Familial adenomatous polyposis (FAP) V
- Attentuated (AFAP) √
- MUYTH-associated polyposis (MAP) V

Hamartomatous polyposis syndromes

- Peutz-Jeghers syndrome (PJS)
- Juvenile polyposis syndrome (JPS)
- Cowden syndrome

Serrated polyposis syndrome (SPS)

- Epidemiology
 - Prevalence 1:80000 to 1:120.000 births

• Genetics

- Autosomal-dominantly inherited syndrome
- PJS arises from mutations of the STK11 gene (tumor suppr. seronine/threonine kinase gene; 94% of pat.)
- 25% de novo mutations

Clinical manifestations

- Mucocutaneous melanin pigment spots in > 95%
- Multiple harmatomatous GI polyp
- Growth begins in first decade of life

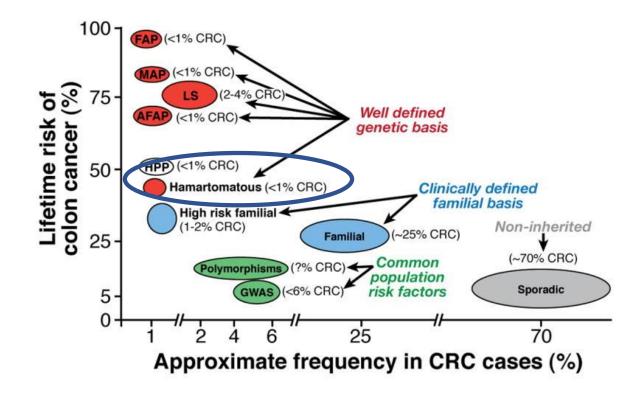
- Symptoms?

- Symtoms arise from larger polyps in second/third decade
 - Bleeding
 - Obstruction
 - Intussusception

PJS polyps – frecuency by segment

- Stomach 24%
 Small bowel 96%
 Colon 27%
- Rectum 24

• Genetic testing ?


Evaluation for PJS

- Individuals with perioral or buccal pigmentation a/o
- ≥ 2 histologically characteristic GI hamartomatous polyps or
- A family history of PJS

 High risk of gastrointestinal (CRC, extracolonic) and extraintestinal cancer in PJS

Gastroenterology. 2010 June ; 138(6): 2044–2058. doi:10.1053/j.gastro.2010.01.054

High risk of gastrointestinal (CRC, extracolonic) and extracolorectal cancer in PJS

	Table 5. Cumulative risks of colorectal cancer in hereditary colorectal cancer syndromes					
Risk of CRC ?	Syndrome	Gene	R	Risk		
	Peutz–Jeghers syndrome	STK11	39	9%	42-	
	Table 7. Cumulative risks of extracolorectal cancer in hereditary colorectal cancer syndromes					
Risk of extracolorectal	Cancer site	General population risk ^a	Syndrome risk	Average age of diagnosis (years)		
cancer?	Peutz–Jeghers syndrome					
Overall risk of developing any cancer at age 70y is 81%	Stomach	<1%	29%	30–40		
	Small bowel	<1%	13%	37–42		
	Pancreas	1.5%	11–36%	41–52		
	Breast	12.4%	32–54%	37–59		
	Ovarian (mostly SCTAT (sex cord tumor with annular tubules))	1.6%	21%	28		
	Uterus	2.7%	9%	43		
	Cervix (adenoma malignum)	<1%	10%	34–40		
	Testicular (Sertoli cell tumor)	<1%	9%	6–9		
	Lung	6.9%	7–17%	47		

• Management ? Surveillance recommendations ?

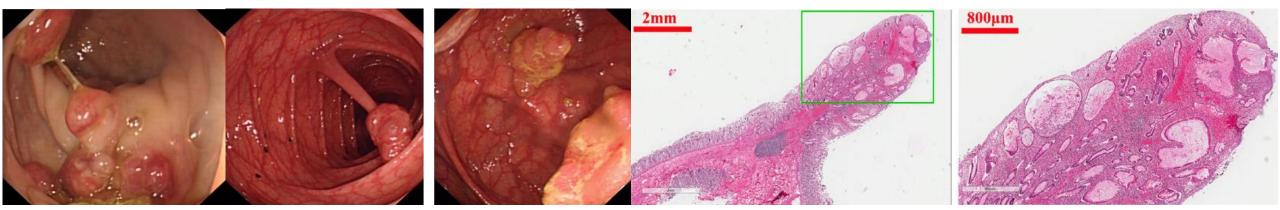
 Table 10. Surveillance recommendations for hereditary gastrointestinal (GI) cancer syndromes

			Site	0 0 1	Surveillance procedures and comments	age 18, then every 3y	
	Gen.pop.	Syndrome]	surveillance (years) interval (years)			
	risk (%)	risk (%)	Peutz–Jeghers syndrome				
Colon		39%	Colon	8, 18 ^d	3	Colonoscopy ^d	
Stomach	<1%	29%	Stomach	8, 18 ^d	3	Esophagogastroduodenoscopy ^d	
Small bowel	<1%	13%	Small bowel	8, 18 ^d	3	Video capsule endoscopy ^d	
Pancreas	1.5%	11-36%	Pancreas	30	1–2	Magnetic resonance cholangiopan	creatography or endoscopic ultrasound
Breast	12.4%	32-54%	Breast	25	1	Annual self-exam starting age 18, starting at age 25	annual breast MRI, and/or mammogram
Ovarian	1.6%	21%	Ovarian	25	1	Pelvic exam and pelvic or transvag helpful	ginal ultrasound, CA-125 probably not
Endometrial	2.7%	9%	Endometrial	25	1	Pelvic exam and pelvic or transvag	ginal ultrasound
Cervix	<1%	10%	Cervix (adenoma malignum)	25	1	Pap smear	
			SCTAT (sex cord tumor with annular tubules)	25	1	Same as uterine and ovarian; almo become malignant	ost all women develop SCTAT, but 20%
Testicular	<1%	9%	Testicular (Sertoli cell tumor)	Birth to teenage y	ears 1	Testicular exam, ultrasound if abno occurs; 10 to 20% of benign Serto	ormalities palpated or if feminization li cell tumors become malignant
Lung	6.9%	7-17%	Lung	_	_	Provide education about symptom	s and smoking cessation

Start at age 8y (polyp growth begins in first decade of life

٠

- If polyps present, repeat every 3y
- If no polyps, repeat at age 18, then every 3y

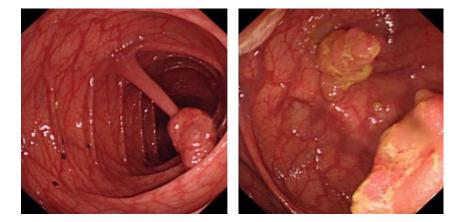

• Epidemiology

– Incidence 1/100.000 to 1/160.000

• Genetics

- Autosomal-dominantly inherited syndrome
- JPS occurs as a result of mutations of the SMAD4 gene or the BMPR1A gene (tumor supressor genes; involved in the the TGF-beta signaling pathway)
- Up to 60% of individuals with clinically defined JPS exhibits mutations of SMAD4 gene or the BMPR1A gene (approx. 40% of JPS pat. have no germline mutation)
- Approxim. 25% of newly diagnosed cases are **de novo mutations**

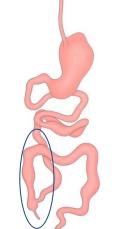
- Clinical manifestations
 - Polyposis involves the entire Gl-tract
 - 70% of polyps occur in the proximal colon
 - Polyps begin to spear in the first decade
 - Average age at diagnosis 18.5 y
 - Juvenile polyps (endoscopic and histologic features)
 - vary in size from small sessil to large pedunculated lesions
 - Smooth, reddish colored, often white exudate on the surface
 - <u>Histopathology</u>; elongated and cystically dilated glands

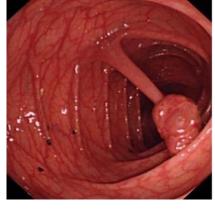


- Colorectum 98%
- Stomach 14%
- Jejunum/Ileum 7%
- Duodeum 7%

Gao et al. BMC Gastroenterology (2020) 20:167; https://doi.org/10.1186/s12876-020-01238-7

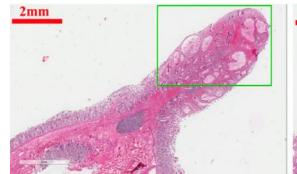
- Clinical manifestations
 - Symptoms
 - Most patients are symptomatic by age 20y
 - Overall, 90 percent of pat. present with rectal bleeding or anemia
 - Pain
 - Diarrhea (due to protein losing enteropathy)
 - Intussusception

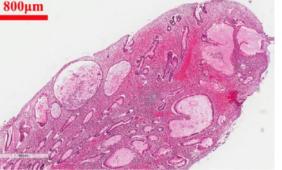

Gao et al. BMC Gastroenterology (2020) 20:167; https://doi.org/10.1186/s12876-020-01238-7


• Genetic testing ?

Individuals with

- \geq 5 JP in the colorectum
- Any juvenile polyps in other parts of GI tract
- First degree relatives of individuals with JPS





JPS polyps – frequency by segment

- Colorectum 98%
- Stomach 14%
- Jejunum/lleum 7%
- Duodeum 7%

• Cancer risk of JPS mutation carriers

High risk for CRC

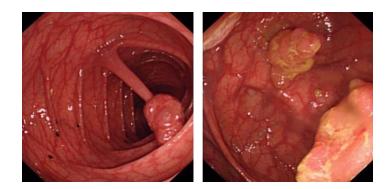
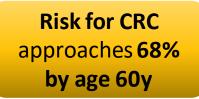
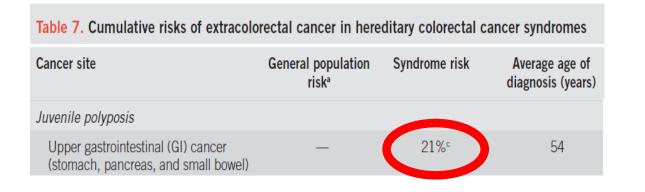




 Table 5. Cumulative risks of colorectal cancer in hereditary colorectal cancer syndromes

Extracolonic malignancies ?

- Increased risk for gastric, duodenal and pancreatic cancers

Greater risk of gastric
 cancer in SMAD4
 mutations carriers

• Surveillance recommandations

Small bowell should peridically surveilled (enteroscopy, VCE, CT/MR enterography) depending on initial findings

Table 10. Surveillance recommendations for hereditary gastrointestinal (GI) cancer syndromes

Juvenile polyposis syndrome				JPS polyps – frequency by
Colon	12-15	1–3	Colonoscopy ^e	segment Colorectum 98%
Site	Age to begin surveillance (years)	Surveillance interval (years)	Surveillance procedures and comments	Stomach 14%Jejunum/Ileum 7%
Stomach	12–15	1–3	Esophagogastroduodenoscopy ^e	• Duodeum 7%
Small Intestine	-	-	Rare, undefined lifetime risk. Periodic enteroscopy, capsule endoscopy, and/or CT enterography	
Pancreas	_		Rare, undefined lifetime risk. No screening recommendations given	 Polyps begin to spear in the first decede
HHT (hereditary hemor- rhagic telangiectasia)	Within first 6 months of life	—	Undefined lifetime risk. In individuals with SMAD4 mutations, screen for vascular lesions associated with HHT	 in the first decade Average age at diagnosis is 18.5y

Management

- Endoscopic resection of polyps \geq 5mm

- Colectomy and IRA/proctocolectomy with IPAA if polyps can not be managed endoscopically

Cowden syndrome (CS)

- Epidemiology
 - Incidence < 1 in 200000</p>
- Genetics
 - Autosomal dominant disorder
 - $\,$ CS is caused by mutations in the PTEN gene

• Clinical manifestations

- Colorectal manifestations
 - Colonic polyps are found in up to 95% of pat.
 - Lifetime risk for CRC 9-16%
 - The majority of CS patients have **multiple synchronous histologic types of polyps**
 - Hamartomatous polyps (most common)
 - Adenomas
 - Ganglionuromas, inflammtory polyps
 - Hyperplastic polyps
 - Polyps may occur at young age

Cowden syndrome (CS)

- Clinical manifestations
 - Extracolorectal manifestations
 - **Diffuse glycogenic acanthosis** in the esophagus
 - Frequent finding of multiple hamartomatous polyps in stomach, duodenum and the small bowel

- Extraintestinal manifestations

Table 7 Cantinuad

• Increased risk for extracolorectal cancer

Cancer site	General population risk ^a	Syndrome risk	Average age diagnosis (ye
Cowden syndrome			
Breast	12.4%	25-85%	38-46
Thyroid	1.1%	3–38%	31-38 ^b
Endometrium	2.7%	5-28%	25 ^d
Kidney (renal cell)	1.6%	15-34%	40 ^d
Melanoma	2	6%	3°

Coriat et al., Endoscopy 2011; 43:723-726

e of

Cowden syndrome (CS)

Surveillance recommendations •

Recommendations are all expert opinion based rather than evidence based

′	Table 10. Surveillance r	e 10. Surveillance recommendations for hereditary gastrointestinal (GI) cancer syndromes				
	Site	Age to begin surveillance (years)	Surveillance interval (years)	Surveillance procedures and comments		
	Cowden syndrome					
	Colon	15	2	Colonoscopy, intervals may increase or decrease, depending on findings		
	Upper GI tract and small bowel	15	2–3	Esophagogastroduodenoscopy. If duodenal polyposis is present, repeat depending on number of polyps		
	Thyroid	Adolescence	1	Thyroid exam and baseline ultrasound		
	Breast	25 30–35	Monthly 1	Self-breast exam Mammography and breast magnetic resonance imaging		
	Uterine	30–35	1	Annual endometrial sampling or vaginal ultrasound		
	Renal cell	18	1	Urine analysis with cytology and possibly renal ultrasound		
	Melanoma	By 18	1	Physical cutaneous examination		

Serrated polyposis syndrome (SPS)

- WHO diagnostic criteria
- Epidemiology
 - Incidence
 - 1/100.000 (N Engl J Med. 2006;355(18):1863-72)
 - 1/151 (Gut.2013;62(3):475)

Genetics

- Genetic etiology has yet not been defined
- Familial cases of SPS have been reported
- Surveillance and management
 - Complete clearance of all polyps \geq 10 mm
 - Surveillance colonoscopy every 1-3 years, depending on
 - number and size of polyps
 - number of concurrent adenomas

Diagnostic criteria for SPS

- At least 5 serrated polyps proximal of the sigmoid colon with ≥2 of these being >10 mm
- Any number of serrated polyps proximal to the sigmoid colon in an individual who has FDR with SPS
- > 20 serrated polyps of any size distributed throughout the large intestine

Serrated polyposis syndrome (SPS)

• Surveillance for individuals with a family history of SPS ?

NCCN recommends colonoscopy of FDRs at the earliest of the following

- Age 40 years
- Same age of the youngest SPS diagnosis in the family
- 10 years before CRC in the family in a patient with SPS

Diagnostic criteria for SPS

- At least 5 serrated polyps proximal of the sigmoid colon with ≥2 of these being >10 mm
- Any number of serrated polyps proximal to the sigmoid colon in an individual who has FDR with SPS
- > 20 serrated polyps of any size distributed throughout the large intestine