

IBS – Therapeutics Bible class

Benjamin Misselwitz

6th of October 2021

Guidelines 2021

British Society of Gastroenterology guidelines on the management of irritable bowel syndrome

Dipesh H Vasant (D), ^{1,2} Peter A Paine, ^{2,3} Christopher J Black (D), ^{4,5} Lesley A Houghton (D), ^{5,6} Hazel A Everitt, ⁷ Maura Corsetti, ⁸ Anurag Agrawal, ⁹ Imran Aziz (D), ^{10,11} Adam D Farmer, ^{12,13} Maria P Eugenicos, ¹⁴ Rona Moss-Morris, ¹⁵ Yan Yiannakou, ¹⁶ Alexander C Ford (D), ^{4,5} Vasant DH, *et al. Gut* 2021;**70**:1214–1240. doi:10.1136/gutjnl-2021-324598

ACG Clinical Guideline: Management of Irritable Bowel Syndrome

Brian E. Lacy, PhD, MD, FACG¹, Mark Pimentel, MD, FACG², Darren M. Brenner, MD, FACG³, William D. Chey, MD, FACG⁴, Laurie A. Keefer, PhD⁵, Millie D. Long, MDMPH, FACG (GRADE Methodologist)⁶ and Baha Moshiree, MD, MSc, FACG⁷ *Am J Gastroenterol 2021;116:17–44. https://doi.org/10.14309/ajg.00000000000000001036; published online December 14, 2020*

Unpublished 2021 S3 Guidelines «Reizdarmsyndrom»

https://www.awmf.org/uploads/tx_szleitlinien/021-016I_S3_Definition-Pathophysiologie-Diagnostik-Therapie-Reizdarmsyndroms_2021-07.pdf

IBS - Pathophysiology

The pathophysiology of IBS is incompletely understood
→ Disorder of gut – brain interaction

- Altered central pain processing, hypervigilance symptom related anxiety
- Visceral hypersensitivity/ visceral hyposensitivity (20%, IBS-C)
- Subtle physiological alterations
 - higher number of mast cells in colon and small intestine
 - lower expression of tight junction proteins
 - lower IL-10 expression
- Bacterial, viral or parasitic infections can trigger IBS
- Some genetic changes have been identified

In 2021, no "positive" test for IBS exists.

IBS - Treatment algorithm

It matters how we talk to our patients

- «Establishing an effective doctor-patient relationship and a shared understanding is key to the management of IBS.»
- «Patients with IBS would like increased empathy, support and information from clinicians about the nature of the condition, diagnosis and symptom management options.»
- «Empathic listening» to optimise the interaction
 → 2 minutes of active listening at the beginning of a consultation...

Personal experience (BM) Consultations with IBS patients are:

- Time consuming
- Physically and psychologically very demanding
- The most difficult task in gastroenterology

How to talk to the patient: Make a positive diagnosis

The diagnosis of IBS is secure if

- Patient has typical symptoms (Rome III, IV)
- No alarm symptoms
- Presents with additional symptoms (bloating, headache, back pain...)
- No abnormal findings during work-up
- Test of time: fluctuating but overall identical symptoms for >2...5...20 years

A positive diagnosis of IBS:

- Improves symptoms
- Reduces the number of additional investigations (by 2-fold)
- Saves costs (by \$400 per patient)

Clear positive diagnostic language:

- "he/ she is suffering from"
- "he/ she is diagnosed with..."
- "I have diagnosed him/ her with...

Qualifying exclusion language:

- "may be suffering from..."
- "it's possible that..."
- "fits the picture of ..."
- \rightarrow Qualifying language in 63% of functional vs. 13% of organic GI disorders
- \rightarrow More diagnostic investigations for functional disorders

Make the patient aware of the diagnosis + Explain disease mechanisms

given stimulus) Visceral Sensitivity (Risk of symptoms for a

Strength of stimulus – endogenous or environmental (e.g. food malabsorption, inflammation)

Symptom Generation in Functional GI Disease: a Model

Explanation of these mechanisms frequently improves symptoms.

Gibson P. J Gastroenterol Hepatol. 2011; 26 S3:128

Exercise

«All patients with IBS should be advised to take regular exercise» recommendation: strong, quality of evidence: weak.

Moderate to vigorous physical activity for 20-60min 3-5 days per week

	Exercise group	Control group
	N=37	N=38
Improvement in IBS-SSS	-51 points	-5 points; p=0.003
Clinical improvement	43%	26%; p=0.07
Worsening of IBS symptoms	8%	23%

Choose your favorite exercise...

Nutritional interventions

Traditional dietary advice: No formal dietetician input necessary

- Adopting «healthy eating patterns»
 - Regular meals
 - Maintaining adequate nutrition
 - Exclude gas producing foods (beans, cabbage, onions)
 - Limiting alcohol and caffeine intake
 - Reducing consumption of fatty and spicy foods.
- Adjusting fibre intake
 - Soluble fibers: RR of IBS symptoms persisting=0.87; 95% CI 0.80 to 0.94

Ajustment of fiber intake

Natural fibers – start low (3-4 g/d)

... increase to recommended 20-30 g/d

- Natural fibers
 - 3.5g in one apple with skin
 - 4.6g in one pear with skin
 - 11.9g per 11 dried prune
 - 5g in one cup of broccoli with stalk
 - 0.5g per slice of white bread
 - 1.7g per slice of whole-wheat bread
- Main side effect: bloating

Natural/ synthetic fiber supplementation

- Psyllium seed (Metamucil[®]) Indian flea seed husks
- Methylcellulose
- Wheat dextrin
- Sterculia gum (Normacol[®]) bark of Indian rubber tree

Main side effect: bloating/ distension

- → Compliance ~50%
- \rightarrow Dose titration (until stool consistency changes)
- \rightarrow "regular defecation" is typically achieved (but not necessarily freedom from pain)

Methylcellulose

A low FODMAPs diet can reduce IBS symptoms

- Randomized controlled, singleblind, crossover
 - 30 patients with IBS + 8 HV
- FODMAPs content:
 - Low FODMAP: 3 g/Tag
 - Typical Australian diet: 24 g/Tag
- Pain in IBS patients has significantly improved under low FODMAPs diet
- No effect in HV

Low FODMAPs diet reduces IBS symptoms

50-70% free of symptoms in some studies

In controlled trials against all other interventions: RR 0.71; 95% CI 0.61 to 0.83

Compared to traditional dietary advice from NICE and the BDA RR 0.82; 95% CI 0.67 to 1.01 lower heterogeneity, lower effect size

General problems with the FODMAPs evidence:

- Difficulties in blinding
- High heterogeneity of studies
- Trials focus on 4-6 week induction period subsequent re-introduction and personalization period is less studied

Gluten free diet in IBS?

Not supported by strong evidence (RR 0.42; 95% CI 0.11 to 1.55) Popular among patients \rightarrow further studies are warrented

First line drugs

Loperamid IBS-D Improves stool frequency no effect on global symptoms (RR 0.44; 95% CI 0.14 to 1.42) <u>Side effects</u>: constipation, nausea, bloating

PEG-based laxatives IBS-C

Week evidence <u>Side effect</u>: abdominal pain

Peppermint oil

Improves global symptoms or abdominal pain (RR 0.58; 95% CI 0.34 to 0.98) Side effect: reflux

Antispasmodics

Improves IBS symptoms: RR 0.65; 95% CI 0.56 to 0.76) hyoscine butylbromide, (butylscopolamine) <u>Side effects</u>: dry mouth, visual disturbance and dizziness

Second line drugs: gut – brain neuromodulators

Tricyclic antidepressents (TCA)

12 RCTs of TCAs, recruiting 787 patients Improve global symptoms or abdominal pain: RR 0.65; 95% CI 0.55 to 0.77 <u>Side effects</u>: drowsiness and dry mouth, cardiac arrhythmia

- → e.g. Amitriptylin 10 mg → increase in 10 mg increments until 30-50 mg (anti-depressent dosage: 75...100...150mg/d)
- → Trimipramin drops (1 mg = 1 drop) 10 drops … 30-50 drops per day anti-depressent dosage: 50-150mg, max: 300mg/d

Selective serotonine reuptake inhibitors (SSRI)

e.g., with comorbid anxiety

Improve global symptoms or abdominal pain (RR 0.68; 95% CI 0.51 to 0.91)

<u>Alternatives</u>: calcium channel $\alpha 2\delta$ ligands (pregabaline), SSNRI (duloxetine)

<u>Clear communication</u>: «SSRI/ TCA are at low doses for their pain modulatory properties and peripheral effects on gastrointestinal function, rather than at a dose that is used to treat common mental disorders»

Network meta-analysis Treatment of abdominal pain in IBS

Network meta-analysis: treatment of abdominal pain

Second line drugs for IBS-D: Eluxadoline (Truberzi®)

<u>Mechanism</u>: μ - and κ -opioid receptor agonist and δ -opioid receptor antagonist <u>Endpoint</u>: decrease in abdominal pain and improvement in stool consistency on the same day for at least 50% of days

4 RCTs with 3122 patients: \rightarrow abdominal pain RR 0.89; 95% CI 0.84 to 0.94 \rightarrow ateal consistency RR 0.87; 05% CI 0.82 to 0.6

→ stool consistency RR 0.87; 95% CI 0.83 to 0.91

Modest improvement in symptoms and diarrhea in IBS-C Cave: No comparison to laxatives

Lembo et al., NEJM 2016;374:242

Second line drugs IBS-D 5-Hydroxytryptamine 3 receptor antagonists

Alosetron:ischemic colitisRamosetron:only available in Asia

Ondansetron Zofran®

- \rightarrow Start Ondansetron 4 mg 1x/d
- \rightarrow Increase to 4 mg 6x/d
- \rightarrow Constipation: decrease to last tolerated dose

Improves urgency, bloating and stool consistency, but not abdominal pain <u>Side effects</u>: constipation, nausea, bloating

Second line drugs IBS-D: Rifaximin

Treatment trials (TARGET-1, 2):

2 RCTs,153 with 1260 patients, Rifaximin 550 mg 3x/day for 14 days was more efficacious than placebo (RR 0.92; 95% CI 0.86 to 0.98)

Re-treatment trial:

2435 patients treated with open label rifaximin

- → 1074 (44.1%) responders
- \rightarrow 692 (64.4%) relapse;
- \rightarrow 636 randomized rifaximin (n = 328) vs. placebo (n = 308)
- → Response = decrease abdominal pain >30%, stool frequency >50%, ≥ 2 weeks rifaximin: 38.1% vs. placebo 31.5% (p=0.03)
- \rightarrow FDA approval (not approved in Switzerland for this indication)
- → Insel: Selektive Darm Dekontamination (SDD-capsules) 80mg gentamicin + 100 polymyxin 4xper day for 2-4 week
- → Alternatives: Norfloxacin, metronidazol, ciprofloxacin, tetracycline, trimethoprim/ sulfamethoxazol

Pimentel et al., NEJM 2011;364:22 Lembo et al., Gastroenterology 2016;151:1113 Lauritano et al., Am J Gastroenterology 2008; 103:2031

Network meta-analysis IBS-D

Abdominal pain and stool consistency

Favours experimental Favours placebo

Global Symptoms

Favours experimental Favours placebo

Second line drugs IBS-C: Linaclotide

Second line drugs IBS-C Linaclotide, Constella[®]

Bioavailability: 0.1% (not resorbed)

Linaclotide: 5 RCTs with 3193 patients FDA composite end point for IBS-C, consisting of

- Improvement in abdominal pain and
- Increase of ≥1 complete spontaneous bowel movement (CSBMs) per week from baseline

RR 0.82; 95% CI 0.78 to 0.87

Plecanatide (3 or 6 µg once a day) was also effective

Linaclotide improves pain and constipation in IBS-C

Rao et al., Am J Gastroenterol 2012; 107:1714 Chey et al., Am J Gastroenterol 2012; 107:1702 Johnston et al., Curr Med Res Opin 2013; 29:149

Lubiprostone (Amitiza®)

Derived from prostaglandin E1

Almost not absorbed (acts locally, from the lumen)

Activates chloride channels, stimulates secretion

Two potential targets:

- Chloride channel-2
 - \rightarrow Activated on apical membrane \rightarrow increased CI- secretion
 - \rightarrow Internalized on basolateral membrane \rightarrow reduced reabsorption
- Activates prostaglandine E2 Rezeptor 4 (EP4) → cAMP
 - → activates the Cystic Fibrosis Transmembrance Conductance Regulator (CFTR)

Wilson et al., Ther Adv Chronic Dis 2015, 6:40

Lubiprostone (Amitiza®) - efficacy

Dosage: $24\mu g$ 2x per day po

Effective in 5 randomized controlled trials in chronic constipation, opioid induced constipation, irritable bowel syndrome (n>3400)

e.g.: 479 patients, 4 weeks: 63% vs. 32% spontaneous bowel movement after medication intake

Cuppoletti et al., AJP Cell Physiol 2004; 287:C21173 Cuthbert, Br J Pharmacol 2011; 162:508 Wilson et al., Ther Adv Chronic Dis 2015, 6:40

Network Meta-Analysis IBS-C

Composite endpoint improvement in abdominal pain and ≥1 increase in Complete spontaneous bowel movements per week

Tenapanor: Na-H exchange inhibitor Tegasorid is only available for severe IBS Prucaloprid has not been tested for IBS

- Self-administered or minimal contact CBT (4 trials, 434 patients, RR 0.61; 95% CI 0.45 to 0.83)
- Therapist-delivered CBT over the telephone (1 RCT, 373 patients, RR 0.50; 95% CI 0.29 to 0.84)
- Group CBT (2 trials, 50 patients, RR 0.41; 95% CI 0.19 to 0.91)

IBS specific "hypnotherapy"

6-12 weekly sessions of 30-60 min

- Patient education
- Visualizing intestinal problems using personal imagery
- Re-gaining control of intestinal function
- Diaphragmatic breathing, techniques overcoming anxiety, fear

Referral for IBS-specific CBT or

_{6 RC1} hypnotherapy for refractory symptoms

- RR after 12 months of treatment
 cor → Why not earlier??
 - compared with a waiting list control

One large open label trial with 1000 patients:

- 76% met primary outcome (IBS-SSS drop >50%) after therapy accompanied by improvements in pain, anxiety, QoL

Vasant et al., Neurogastroenterol Motil 2019; 31:e13573 Miller et al, AP&T 2015; 41:844

Refractory/ severe IBS

Imprecisely defined as a composite of

- Severe patient-reported gastrointestinal and extraintestinal symptoms
- High degree of disability
- Pronounced illness-related perceptions and behaviours
- Insufficient response to conventional treatments
- High health care utilisation.

Approximately 25% of patients.

Risk of incorrect diagnosis is (somewhat) higher \rightarrow review of diagnosis At high risk for inappropriate interventions.

- \rightarrow multi-disciplinary approach.
 - \rightarrow «augmentation»: duloxetin (SNRI) + gabapentin
 - \rightarrow Dietician, psychotherapist

Emerging drugs and therapeutics in IBS in clinical trials

Minesapride5-HT4 agonist)EbastineHistamin receptor-1 antagonistElobixibatBile acid transport inhibitorMizagliflozinSodium-glucose cotransporter-1 inhibitorDelayed-releaselinaclotideOlorinabCannabinoid type-2 receptor agonist

Absorbing gel

Exoperistalsis device

Thank you for your attention!