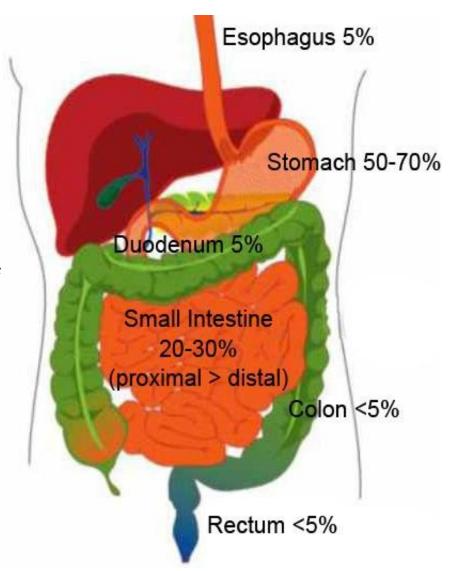

Gastrointestinal Stromal Tumor (GIST)

Bible class 8.9.21 Stefan Christen


Epidemiology

- Incidence approx. 1 / 100'000 /y
- 0.1 3% of all GI-tumors
- slight prevalence in males
- mean age 60-65y
- "mini-GISTs" (1–10 mm) are very common (detectable in 22.5% of the autopsies in individuals older than 50 years)

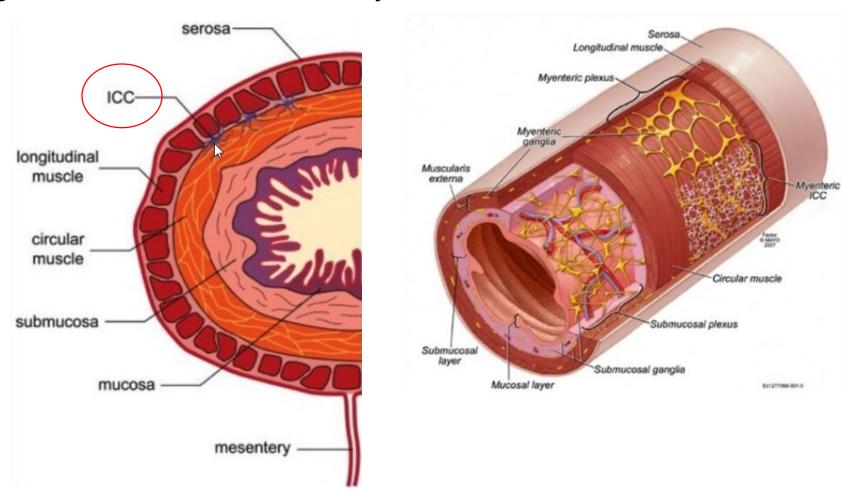
Localisation

20% of GIST have metastasis at time of diagnosis

- 65% Liver
- 20% Peritoneum
- very rare Lung, Bone, Lymphnodes

Syndromes linked to GISTs:

 Carney triad syndrome: gastric GISTs, paraganglioma and pulmonary chondromas

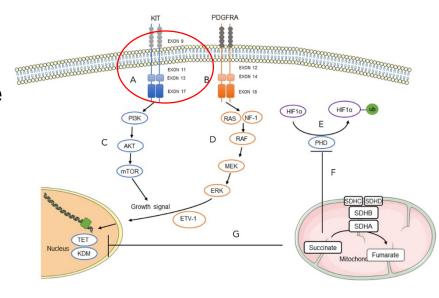


- Carney—Stratakis syndrome: a dyad of GIST and paraganglioma
- Neurofibromatosis type 1: leading to wild-type, often multicentric GIST, predominantly located in the small bowel

- Families with germline autosomal dominant mutations of KIT are extremely rare
 - → presenting with multiple GISTs at an early age

Etiology - Pathogenesis

Originate from interstitial cells of Cajal


[Hirota S et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998;279:577]

Etiology - Pathogenesis

- Originate from interstitial cells of Cajal
 - pluripotent mesenchymal stem cells
 - In normal cells activation of the of the c-kit tyrosine kinase requires the presence of an endogenous ligand (c-kit ligand or stem cell factor)

1998 gain-of-function Mutation of c-kit

- → uncontrolled activation of tyrosine kinase
- → uncontrolled growth / proliferation
 - KIT 90-95% of GIST
 - PDGFRA 5-8% of GIST

Molecular genetics – c-Kit-mutation analysis

- c-Kit-Mutation¹⁾
 - Exon 9: poorer response to Imatinib, poorer prognosis
 - Exon 11: better response to Imatinib, better prognosis

Mutation type	Approximate frequency	Histological type	Anatomical site	In vitro susceptibility to imatinib	Response to Imatinib <i>in vivo</i>
(IT mutation	80-85%	Predominately spindle cell			
Exon 9	10%		Small bowel	Yes	Intermediate
Exon 11	60–70%			Yes	Excellent
Exon 13	1%			Yes	Some responses*
Exon 17	1%			Yes	Some responses*

No known mutation: 'wild type' GIST, poor prognosis

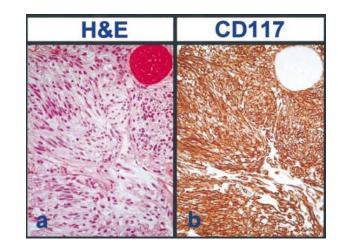
Recommendations for Mutational Analysis

Primary disease

• not routinely recommended due to insufficient data to support its use for improved risk stratification and prognostication of risk for relapse in individual patients.

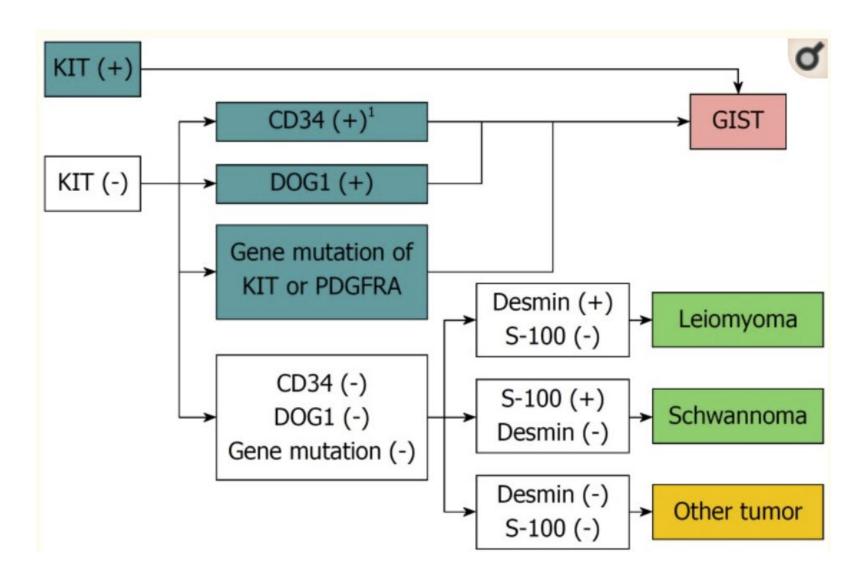
Metastatic or advanced disease

- *KIT* exon 11 mutations are associated with higher response rates and longer progression-free survival than *KIT* exon 9 mutations.
- Mutational analysis → impact on the dose of imatinib for small bowel GISTs because KIT exon 9 mutations are shown to respond better to higher-dose imatinib.


Histologic patterns

- spindle cell type 70%
 - DD includes: leiomyoma, leiomyosarcoma, schwannoma, intra-abdominal desmoid-type fibromatosis, inflammatory myofibroblastic tumor, solitary fibrous tumor, sarcomatoid carcinoma.
- predominantly epithelioid cell type 20%
 - DD includes: metastatic melanoma, clear cell sarcoma, epithelioid variants of leiomyosarcoma, and epithelioid hemangioendothelioma.
- mixture of both spindle and epithelioid cells 10%

Immunehistochemistry


95% are positive for KIT (CD117) or DOG1

- Other markers:
- CD34 antigen (70%)
- smooth muscle actin (SMA; 30%–40%)
- desmin (< 5%)
- \$100 protein (~5%)

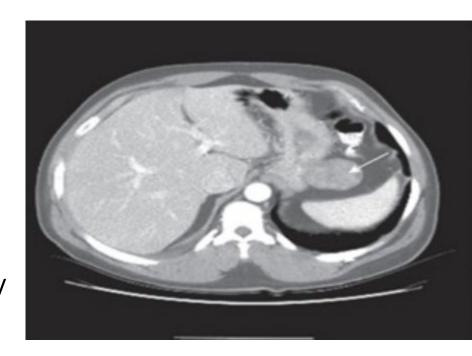
- 5% of GISTs are "KIT-negative"
- 2.6% of GISTs are negative for both DOG1 and KIT
- -> challenging diagnosis- mutations in the *PDGFRA* gene.

Immunehistochemistry

Clinical presentation

■ **No symptoms** 15 – 30%

 Incidental findings e.g. on endoscopy, radiology, resections for other reasons


- Symptomatic GIST ~75%
 - GI bleeding 25 53% (overt bleeding 34%)
 - Abdominal pain 20 50%
 - Passage 10 30%: N/V, early satiety, ileus, pain
 - Palpable mass 8 13%

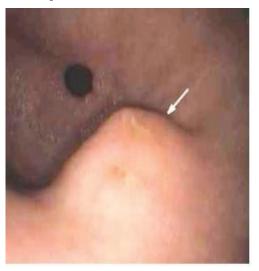
Diagnostic workup

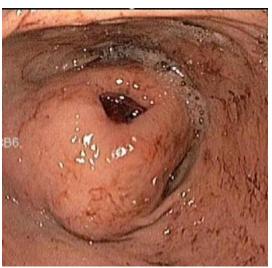
Diagnostic modalities:

- Endoscopy
- Endosonography
- Radiology (CT, PET-CT, MRI)
- Histology / immunohistochemistry

Diagnostic modality of choice:

EUS-guided biopsy / FNA (if feasible)


Is biopsy mandatory?


 In some situations biopsy may not be necessary (ie classic EUS findings, tumor easily resectable, preoperative therapy not required)

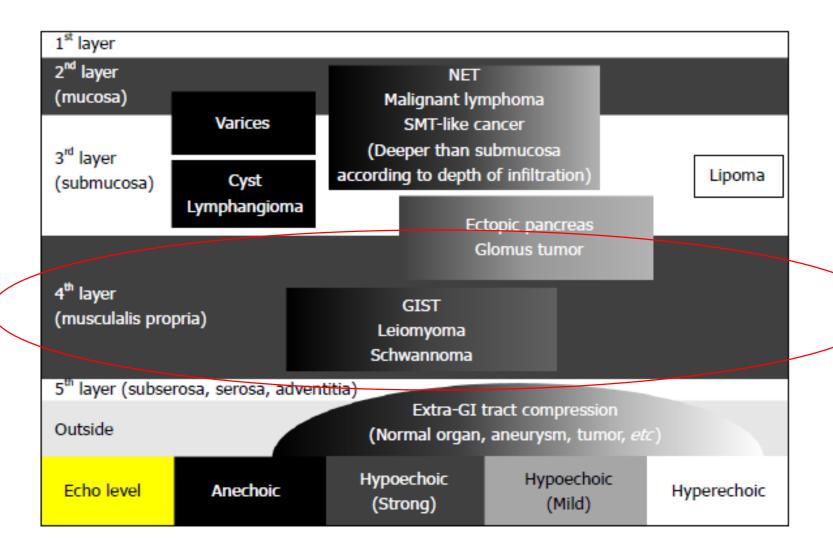
Diagnostic workup

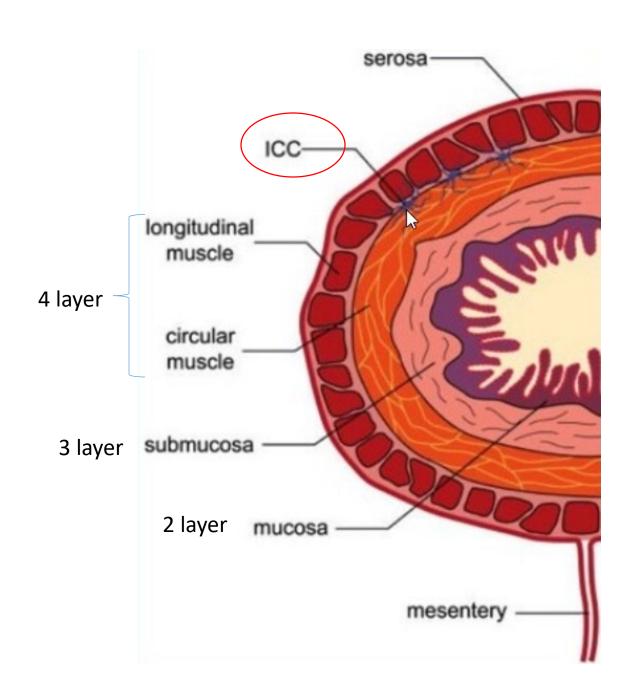
Endoscopy

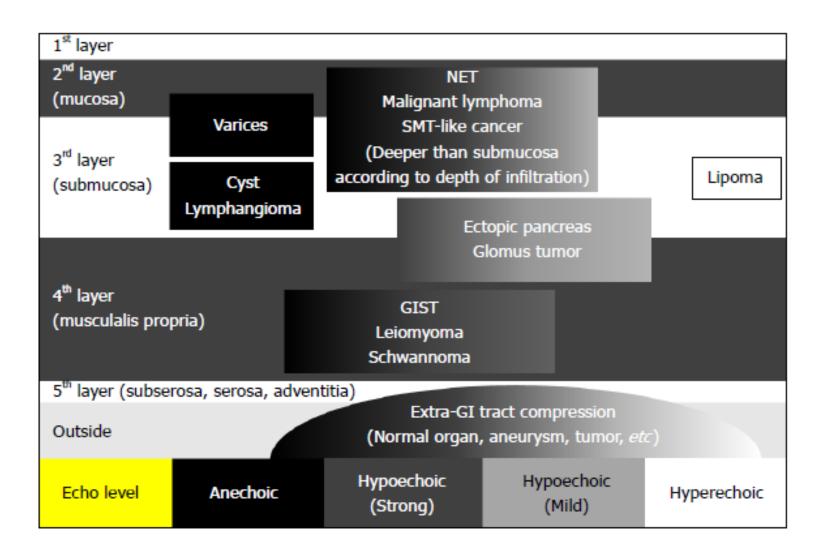
Endoscopic features of GIST:

- Drawback of Endoscopy w/ biopsy (stacked / bite-on-bite):
 - Risk of bleeding / tumor perforation
 - Poor diagnostic yield (17-42%)

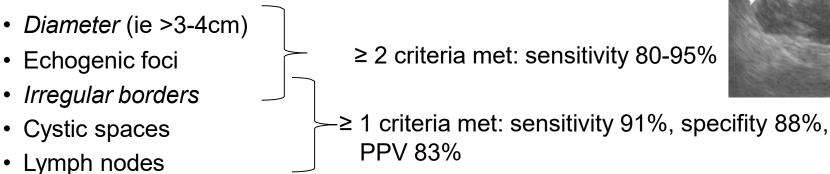
Diagnostic workup


EUS


Classic EUS features of GIST:



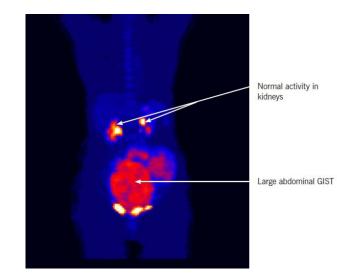
- fourth wall layer (muscularis propria)
- round to oval shape
- hypoechoic



EUS +/- biopsy/FNA – Advantages:

Most accurate and reliable method to secure a diagnosis of GIST

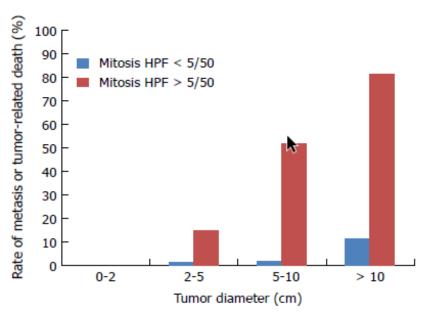
- Tissue sampling
- Diagnostic rate using EUS-FNA 62-93%
 - 71% for 1-2cm → 86% for 2-cm to 4-cm tumors, and 100% for > 4-cm tumors
- solid mass of < 1 cm is technically difficult →EUS-FNA is recommended for masses of > 1 cm


Helps assessing malignant potential

[Ando N et al. The diagnosis of Gi stromal tumors with EUS-guided fine needle aspiration with immunohistochemical analysis. Gastrointest Endosc 2002;55:37] [Chak A et al. Endosonographic differentiation of benign and malignant stromal cell tumors. Gastrointest Endosc 1997;45:468] [Palazzo L et al. Endosonographic features predictive of benign and malignant gastrointestinal stromal cell tumours. Gut 2000;46:88]

Diagnostic workup 18FDG-PET

- GIST highly metabolically active
- May not detect GIST <2cm

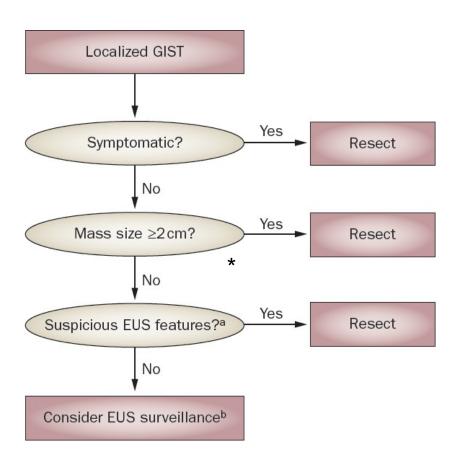

- Assess complex metastatic disease in patients who are being considered for surgery
- Correlation between ¹⁸FDG-Uptake & mitotic index
- Monitoring tumor response to therapy

[Kamiyama Y et al. 18F-fluorodeoxyglucose positron emission tomography: useful technique for predicting malignant potential of gastrointestinal stromal tumors. World J Surg 2005;29:1429]

[Stroobants S et al. 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur J Cancer 2003;39:2012] [Antoch G et al. Comparison of PET, CT, and dual-modality PET/CT imaging for monitoring of imatinib (STI571) therapy in patients with gastrointestinal stromal tumors. J Nucl Med 2004;45:357]

Prognosis

- Not only large GISTs with a high mitotic index have a risk to build metastasis, also small GISTs with a low mitotic index rarely show a malignant course with metastasis.
- GIST is considered to be a potentially malignant tumor
- They are not classified as benign or malignant but stratified by their clinical risk of malignancy:
- Very low, Low, intermediate and high
- The metastatic risk of GIST increases according to the tumor size and the mitotic count



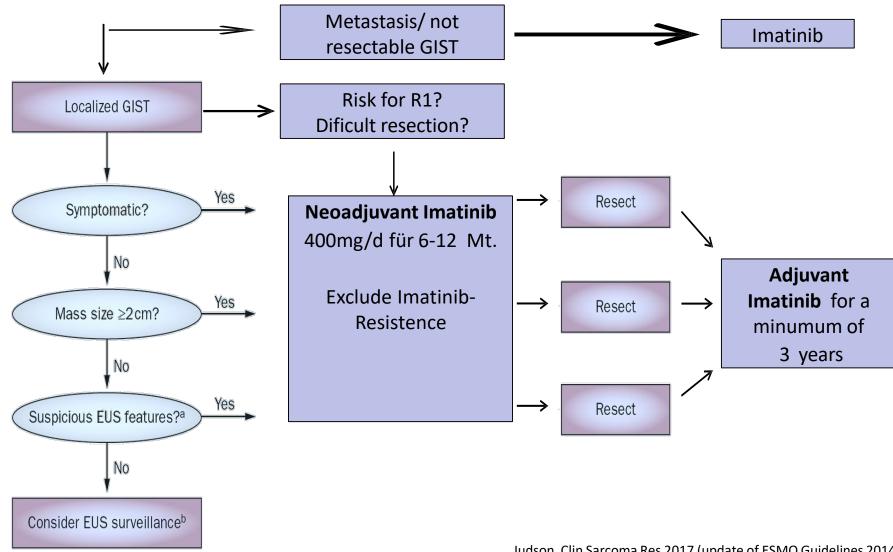
Risk stratification

Table 1 Risk Stratification of Primary GIST by Mitotic Index, Size, and Site									
Tumor Parameters		Risk for Progressive Disease*(%), Based on Site of Origin							
Mitotic Rate	Size	Stomach	Jejunum/Ileum	Duodenum	Rectum				
≤ 5 per 50 HPF	≤ 2 cm	None (0%)	None (0%)	None (0%)	None (0%)				
	> 2, ≤ 5 cm	Very low (1.9%)	Low (4.3%)	Low (8.3%)	Low (8.5%)				
	> 5, ≤ 10 cm	Low (3.6%)	Moderate (24%)	Insufficient data	Insufficient data				
	> 10 cm	Moderate (10%)	High (52%)	High (34%)	High (57%)				
> 5 per 50 HPF	≤ 2 cm	None [†]	High [†]	Insufficient data	High (54%)				
	> 2, ≤ 5 cm	Moderate (16%)	High (73%)	High (50%)	High (52%)				
	> 5, ≤ 10 cm	High (55%)	High (85%)	Insufficient data	Insufficient data				
	> 10 cm	High (86%)	High (90%)	High (86%)	High (71%)				

• small intestinal GISTs are more aggressive than gastric GISTs of equal size

Management localized GIST

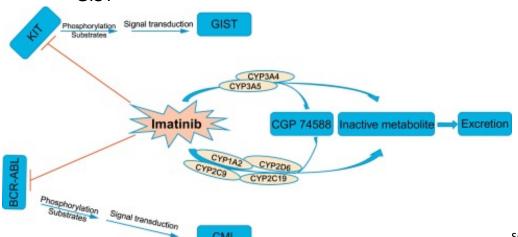
a) Possible high-risk EUS features:


- irregular border
- Cystic spaces
- Ulceration
- echogenic foci
- heterogenity

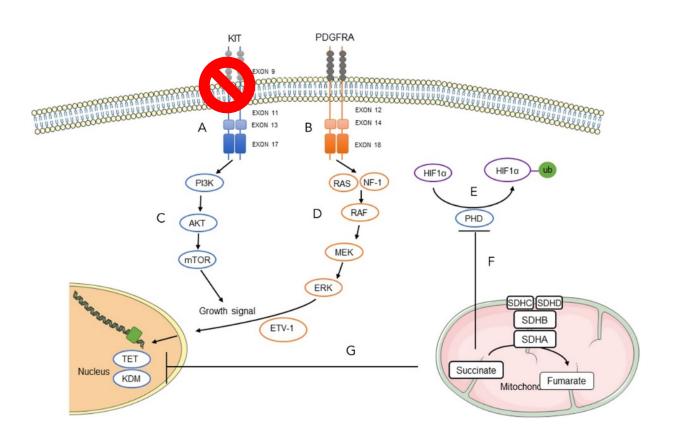
Principles of surgery in localized GIST

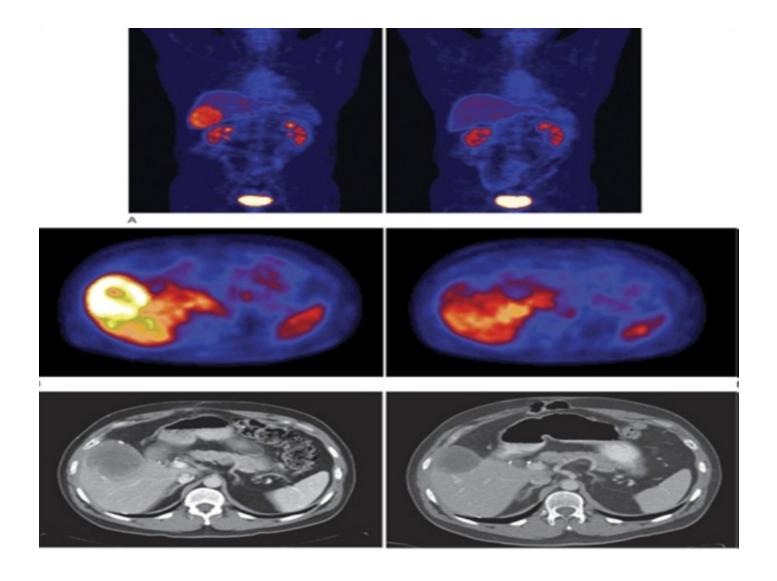
- Complete tumor removal with clear resection margins
- Avoidance of tumor rupture
- Gastric GIST: lap. wedge resection when feasible
- Routine lymphadenectomy not necessary 1)

- GISTs with very low, low, and moderate risks are followed up by CT every 6 mo to 1 year
- high-risk and clinically malignant GISTs (metastasis, injury to the pseudocapsule, peritoneal dissemination, or infiltration of other organs) are followed up by CT every 4 to 6 mo


Management of GIST

Judson, Clin Sarcoma Res 2017 (update of ESMO Guidelines 2014) Chak A , Gastrointest Endosc 1997 Sepe, Nat Rev Gastroenterol Hepatol 2009

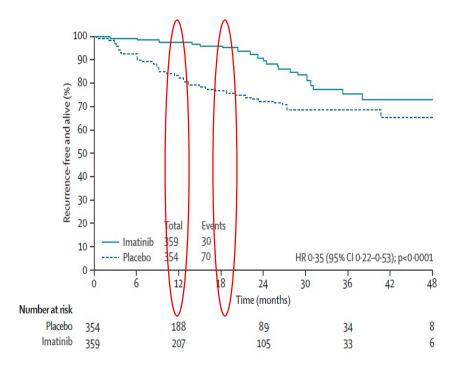

Imatinib (Glivec)


- Tyrosinkinase-Inhibitor: KIT, abl, Bcr-abl, PDGF-R
- Responsrate 83 89 % of Patient
- Effect depends on mutation
 - Beste effect in exon 11 mutation
 - In exon 9 mutation use higer dose
 - Almost no effegt in PDGFRA exon 18 mutation D842 V and NF-1 in advanced **GIST**

CML

• PET scan and CT scans in a patient with a GIST metastatic to the liver, before (left) and after treatment with imatinib mesylate

Imatinib


- Settings / Indications?
 - Adjuvant setting:
 - prolongs relapse-free survival (RFS), overall survival not affected¹)
 At 1y RFS 98% vs. 83%, HR 0.35; best response for GIST >10cm with HR 0.28
 - dose / duration? 400mg/d at least 1y
 High risk GIST: better RFS / OS with therapy 3y²⁾
 - Additive setting: incomplete resection (R1/2), intraoperative tumor perforation
 - **Neoadjuvant setting**: Primarily unresectable / marginally resectable GIST (e.g. large tumor and/or poorly positioned, high operative risk, organ-preserving surgery)

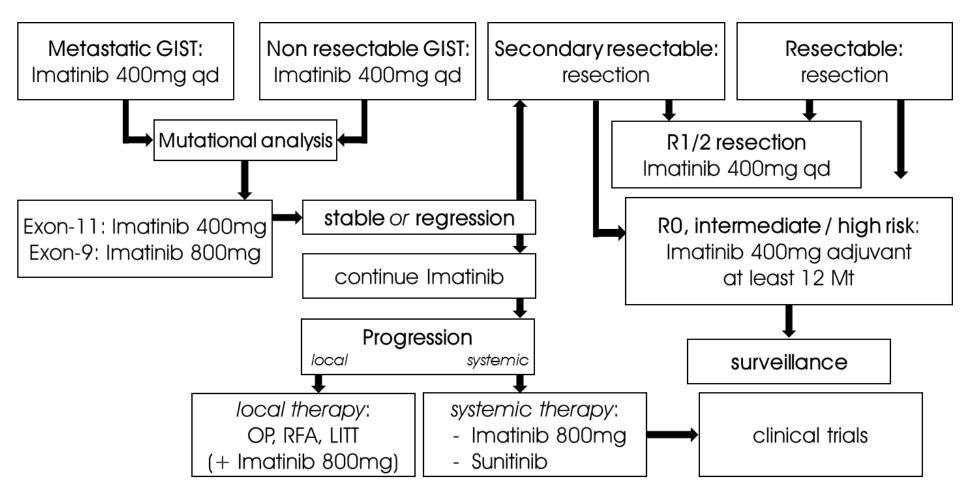
^{1) [}DeMatteo RP et al. Lancet 2009;373:1097], [Kang B et al. J Clin Oncol 2009;27(Suppl):abstract#e21515]

^{2) [}Joensuu H et al. Twelve versus 36 months of adjuvant imatinib (IM) as treatment of operable GIST with a high risk of recurrence: Final results of a randomized trial (SSGXVIII/AIO). J Clin Oncol 2011;29(Suppl): ASCO 2011,#LBA1]

Adjuvant setting

- Randomised, double-blinde, placebo-controlled study
- GIST ≥ 3 cm, KIT-positiv, completely resected
- 400mg/d Imatinib (n=359) vs. placebo (n=354) over 1 year

Results:


1 year without reccourence Imatinib (98%) vs. Placebo (80%)

Imatinib-group: higher reccourence rate 6 month after therapy

Metastatic or inresectable GIST

- Continous Imatinib (400mg/d), often relaps after stopping
 - If tumorprogression mesurement of serumlevel (interactions, malcompliance)
 - Real failure of therapy:
 - Rise dose (better survival than change to Sunitinib)
 - Second line therapy Sunitinib (Sutent®, Multikinase-Inhibitor)
 - Third line therapy Regorafenib (Stivarga®, Multikinase-Inhibitor)

Therapeutic algorithm

Pediatric GISTs

- fundamentally different clinicopathologic entities (1-2% of all GISTs).
- typically lack KIT/PDGFRA mutations
- predominantly in girls, multiple nodules in the stomach
- distinct genomic profile → overexpression of *IGF1R*
- Most pediatric wild-type GISTs progress to malignancy without acquiring largescale chromosomal aberrations
- indolent clinical course despite a high rate of recurrence, are associated with longer survival even in patients with metastatic disease
- predominant clinical symptom is anemia

Summary GIST

- GIST most common mesenchymal GI-neoplasie
- Ca. **70% benigne**, but all sizes can develope maligne
- EUS with FNP to confirm the diagnosis
- Complete Resektion as only currative Treatment
- Risk of reccourence depends on size, localisation and mitotic rate >
 Imatinib (as adjuvant and neoadjuvant therapy)
- In advanced GIST Imatinib first choice
- Sunitinib (Sutent®) as 2. and Regorafenib (Stivarga®) 3. line therapy

Thank you!